Skip to main content
Log in

The effect of pharyngeal structures on the severity of obstructive sleep apnea

  • Neurology • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background/objective

Obstructive sleep apnea (OSA) is characterized by complete or partial cessation of breathing during sleep. The tongue is suggested as a possible anatomical site causing airway obstruction. However, the role of other pharyngeal structures in the development of OSA remains unclear. We designed a study using both the apnea–hypopnea index (AHI) and the oxygen saturation measurements to assess the severity of OSA. We aimed to identify critical anatomical structures of the upper airway that correlate with the severity of OSA and to evaluate the utility of magnetic resonance imaging (MRI) markers to detect possible OSA in patients without overt symptoms.

Materials and methods

The study included participants referred to the neurology outpatient clinic from the check-up unit. Participants were grouped as controls, mild, moderate, or severe OSA according to the AHI. A cranial MRI with a field of view (FOV) encompassing the upper airway structures was obtained from all participants. The areas of the tongue and the uvula were measured on the sagittal images by drawing the boundaries of the tissues manually. The posterior air space (PAS) area was evaluated from regions of interest in five parallel planes.

Results

Of 105 participants, 30 were controls, 27 had mild, 25 had moderate, and 23 had severe OSA. The moderate and severe OSA groups did not differ in oxygen saturation levels during sleep. Therefore, patients with moderate and severe OSA were combined into one group (moderate/severe OSA). The area of the tongue was significantly larger in the moderate/severe OSA group compared to the control group. Both the tongue and the uvula areas showed a significant positive correlation with the AHI.

Conclusion

Our findings suggest that the tongue and uvula have prominent roles in the severity of OSAS. It may be useful to measure these structures with MRI to screen for at-risk individuals without overt OSA symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. McNicholas WT (2002) Public health and medicolegal implications of sleep apnoea. Eur Respir J 20:1594–1609. https://doi.org/10.1183/09031936.02.00404502

    Article  PubMed  Google Scholar 

  2. Mortimore IL, Marshall I, Wraith PK et al (1998) Neck and total body fat deposition in nonobese and obese patients with sleep apnea compared with that in control subjects. Am J Respir Crit Care Med 157:280–283. https://doi.org/10.1164/ajrccm.157.1.9703018

    Article  CAS  PubMed  Google Scholar 

  3. Malhotra A, Huang Y, Fogel RB et al (2002) The male predisposition to pharyngeal collapse: importance of airway length. Am J Respir Crit Care Med 166:1388–1395. https://doi.org/10.1164/rccm.2112072

    Article  PubMed  Google Scholar 

  4. Shelton KE, Woodson H, Gay S et al (1993) Pharyngeal fat in obstructive sleep apnea. Am Rev Respir Dis 148:462–466. https://doi.org/10.1164/ajrccm/148.2.462

    Article  CAS  PubMed  Google Scholar 

  5. Shelton KE, Gay SB, Hollowell DE et al (1993) Mandible enclosure of upper airway and weight in obstructive sleep apnea. Am Rev Respir Dis 148:195. https://doi.org/10.1164/ajrccm/148.1.195

    Article  CAS  PubMed  Google Scholar 

  6. Trudo FJ, Gefter WB, Welch KC et al (1998) State-related changes in upper airway caliber and surrounding soft-tissue structures in normal subjects. Am J Respir Crit Care Med 158:1259–1270. https://doi.org/10.1164/ajrccm.158.4.9712063

    Article  CAS  PubMed  Google Scholar 

  7. Whittle AT, Marshall I, Mortimore IL et al (1999) Neck soft tissue and fat distribution: comparison between normal men and women by magnetic resonance imaging. Thorax 54:323–8. https://doi.org/10.1136/thx.54.4.323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryan CF, Lowe AA, Li D et al (1991) Three-dimensional upper airway computed tomography in obstructive sleep apnea. Am Rev Respir Dis 144:428–432. https://doi.org/10.1164/ajrccm/144.2.428

    Article  CAS  PubMed  Google Scholar 

  9. Lowe AA, Gionhaku N, Takeuchi K et al (1986) Three-dimensional CT reconstructions of tongue and airway in adult subjects with obstructive sleep apnea. Am J Orthod Dentofac Orthop 90:364–374. https://doi.org/10.1016/0889-5406(86)90002-8

    Article  CAS  Google Scholar 

  10. Schwab RJ, Pasirstein M, Pierson R et al (2003) Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 168:522–530. https://doi.org/10.1164/rccm.200208-866OC

    Article  PubMed  Google Scholar 

  11. Arens R, McDonough JM, Corbin AM et al (2002) Linear dimensions of the upper airway structure during development: assessment by magnetic resonance imaging. Am J Respir Crit Care Med 165:117–122. https://doi.org/10.1164/ajrccm.165.1.2107140

    Article  PubMed  Google Scholar 

  12. Arens R, McDonough JM, Costarino AT et al (2001) Magnetic resonance imaging of the upper airway structure of children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 164:698–703. https://doi.org/10.1164/ajrccm.164.4.2101127

    Article  CAS  PubMed  Google Scholar 

  13. Welch KC, Foster GD, Ritter CT et al (2002) A novel volumetric magnetic resonance imaging paradigm to study upper airway anatomy. Sleep 25:530–540. https://doi.org/10.1093/sleep/25.5.530

    Article  Google Scholar 

  14. Barrera JE, Pau CY, Forest V et al (2017) Anatomic measures of upper airway structures in obstructive sleep apnea. World J Otorhinolaryngol - Head Neck Surg 3:85–91. https://doi.org/10.1016/j.wjorl.2017.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ciscar MA, Juan M, Martinez V et al (2001) Magnetic resonance imaging of the pharynx in OSA patients and healthy subjects. Eur Respir J 17:79–86. https://doi.org/10.1183/09031936.01.17100790

    Article  CAS  PubMed  Google Scholar 

  16. Rodenstein DO, Dooms G, Thomas Y et al (1990) Pharyngeal shape and dimensions in healthy subjects, snorers, and patients with obstructive sleep apnoea. Thorax 45:722–7. https://doi.org/10.1136/thx.45.10.722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwab RJ, Gubta KB, Gefter WB et al (1995) Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Significance of the lateral pharyngeal walls. Am J Respir Crit Care Med 152:1673–1689. https://doi.org/10.1164/ajrccm.152.5.7582313

    Article  CAS  PubMed  Google Scholar 

  18. Barbé F, Amilibia J, Capote F (1995) Diagnóstico del síndrome de apneas obstructivas durante el sueño. Informe de consenso del área de insuficiencia respiratoria y trastornos del sueño. Arch Bronconeumol 31:460–462. https://doi.org/10.1016/S0300-2896(15)30866-8

    Article  PubMed  Google Scholar 

  19. Browman CP, Sampson MG, Yolles SF et al (1984) Obstructive sleep apnea and body weight. Chest 85:435–436. https://doi.org/10.1378/chest.85.3.435

    Article  CAS  PubMed  Google Scholar 

  20. Berry RB, Brooks R, Gamaldo CE et al (2015) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications : version 2.3. American Academy of Sleep Medicine

  21. Temirbekov D, Gunes S, Yazici MZ et al (2018) The ignored parameter in the diagnosis of obstructive sleep apnea syndrome: the oxygen desaturation index. Turk Arch Otorhinolaryngol 56:1–6. https://doi.org/10.5152/tao.2018.3025

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chung F, Liao P, Elsaid H et al (2012) Oxygen desaturation index from nocturnal oximetry: a sensitive and specific tool to detect sleep-disordered breathing in surgical patients. Anesth Analg 114:993–1000

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Garcia MA, Sanchez de-la Torre M, White DP et al (2023) Hypoxic burden in obstructive sleep apnea: present and future. Archivos deBronconeumologia 59:36–43. https://doi.org/10.1016/j.arbres.2022.08.005

    Article  Google Scholar 

  24. Azarbarzin A, Sands SA, Stone KL et al (2019) The hypoxic burden of sleep apnoea predicted cardiovascular disease-related mortality: the Osteoporotic Fractures in Men Study and the Sleep Heart Health Study. Eur Heart J 40:1149–1157

    Article  PubMed  Google Scholar 

  25. Gupta A, Shukla G (2018) Obstructive sleep apnea and stroke. J Clin Sleep Med 14(10):1819. https://doi.org/10.5664/jcsm.7416

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guay-Gagnon M, Vat S, Forget MF et al (2022) Sleep apnea and the risk of dementia: a systematic review and meta-analysis. J Sleep Res 31(5):e13589. https://doi.org/10.1111/jsr.13589

    Article  PubMed  Google Scholar 

  27. Tavsanli ME (2022) Comorbidity analysis in obstructive sleep apnea patients. Annal Med Res 29(9):957–961

    Google Scholar 

  28. Bonsignore MR, Baiamonte P, Mazzuca E et al (2019) Obstructive sleep apnea and comorbidities: a dangerous liaison. Multidiscip Respir Med 14:1–12

    Article  Google Scholar 

  29. White DP (2006) Sleep apnea. Proc Am Thorac Soc 3:124–128. https://doi.org/10.1513/pats.200510-116JH

    Article  CAS  PubMed  Google Scholar 

  30. Nashi N, Kang S, Barkdull GC et al (2007) Lingual fat at autopsy. Laryngoscope 117:1467–1473. https://doi.org/10.1097/MLG.0b013e318068b566

    Article  PubMed  Google Scholar 

  31. Humbert IA, Reeder SB, Porcaro EJ et al (2008) Simultaneous estimation of tongue volume and fat fraction using IDEAL-FSE. J Magn Reson Imaging An Off J Int Soc Magn Reson Med 28:504–508. https://doi.org/10.1002/jmri.21431

    Article  Google Scholar 

  32. Kim AM, Keenan BT, Jackson N et al (2014) Tongue fat and its relationship to obstructive sleep apnea. Sleep 37:1639–1648. https://doi.org/10.5665/sleep.4072

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sforza E, Roche F (2016) Chronic intermittent hypoxia and obstructive sleep apnea: an experimental and clinical approach. Hypoxia 4:99–108. https://doi.org/10.2147/hp.s103091

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mortimore IL, Marshall I, Wraith PK et al (1998) Neck and total body fat deposition in nonobese and obese patients with sleep apnea compared with that in control subjects. Am J Respir Crit Care Med 157(1):280–283. https://doi.org/10.1164/ajrccm.157.1.9703018

    Article  CAS  PubMed  Google Scholar 

  35. Gray EL, McKenzie DK, Eckert DJ (2017) Obstructive sleep apnea without obesity ıs common and difficult to treat: evidence for a distinct pathophysiological phenotype. J Clin Sleep Med 13(1):81–8. https://doi.org/10.5664/jcsm.6394

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wellman A, Eckert DJ, Jordan AS et al (2011) A method for measuring and modeling the physiological traits causing obstructive sleep apnea. J Appl Physiol 110:1627–1637. https://doi.org/10.1152/japplphysiol.00972.2010

    Article  PubMed  PubMed Central  Google Scholar 

  37. Younes M, Ostrowski M, Atkar R et al (2007) Mechanisms of breathing instability in patients with obstructive sleep apnea. J Appl Physiol 103:1929–1941. https://doi.org/10.1152/japplphysiol.00561.2007

    Article  PubMed  Google Scholar 

  38. White DP (2005) Pathogenesis of obstructive and central sleep apnea. Am J Respir Crit Care Med 172:1363–1370. https://doi.org/10.1164/rccm.200412-1631SO

    Article  PubMed  Google Scholar 

  39. Malhotra A, White DP (2002) Obstructive sleep apnoea. Lancet 360:237–245. https://doi.org/10.1016/S0140-6736(02)09464-3

    Article  PubMed  Google Scholar 

  40. Eckert DJ, Malhotra A (2008) Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:144–153. https://doi.org/10.1513/pats.200707-114MG

    Article  PubMed  PubMed Central  Google Scholar 

  41. Longobardo GS, Evangelisti CJ, Cherniack NS (2009) Influence of arousal threshold and depth of sleep on respiratory stability in man: analysis using a mathematical model. Exp Physiol 94(12):1185–1199

    Article  CAS  PubMed  Google Scholar 

  42. Liégeois F, Albert A, Limme M (2010) Comparison between tongue volume from magnetic resonance images and tongue area from profile cephalograms. Eur J Orthod 32(4):381–386. https://doi.org/10.1093/ejo/cjp105

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Murat Aksu for his contributions to the editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection were performed by MET and AZ, and analysis was performed by MET and MS. The first draft of the manuscript was written by MET, MS, and AZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mustafa Emir Tavsanli.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in this study were in accordance with the ethical standards of the institutional research committee (Acibadem Mehmet Ali Aydinlar University Ethical Committee) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavsanli, M.E., Zeynalova, A. & Seckin, M. The effect of pharyngeal structures on the severity of obstructive sleep apnea. Sleep Breath (2023). https://doi.org/10.1007/s11325-023-02973-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11325-023-02973-3

Keywords

Navigation