Skip to main content
Log in

Inhibition of STAT3 signal pathway recovers postsynaptic plasticity to improve cognitive impairment caused by chronic intermittent hypoxia

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Chronic intermittent hypoxia (CIH) is a major cause of cognitive dysfunction in people with obstructive sleep apnea syndrome (OSAS), as it damages synapse structure, and function. This study aimed to investigate the potential mechanisms resulting in cognitive impairment caused by CIH in patients with OSAS.

Methods

Healthy adult SD male rats (n = 36) were randomly divided into four groups: control, CIH, WP1066, and dimethyl sulfoxide (DMSO). The CIH, WP1066, and DMSO groups were exposed to intermittent hypoxic environments for 8 h per day for 28 d. The WP1066 group received intraperitoneal injection of WP1066, a selective signal transducer and activator of transcription-3 (STAT3) inhibitor. All the experimental rats were subjected to the Morris water maze. Hippocampal tissue samples (n = 6 per group) were used for western blot analysis, and brain tissue samples (n = 3 per group) were used for immunohistochemistry and hematoxylin and eosin staining.

Results

The cognition of rats exposed to prolonged CIH was impaired. P-STAT3 expression was found to be higher in CIH rats than in control rats. Postsynaptic density95 (PSD95) expression was significantly reduced in rats with CIH-induced learning and memory impairment, but it significantly increased after the STAT3 signaling pathway was blocked, which improved learning and memory ability. However, inhibition of the STAT3 signaling pathway failed to improve the decline of synaptophysin (SYP) protein caused by CIH.

Conclusions

When rats are exposed to CIH, STAT3 in the brain is activated, PSD95 and SYP levels decrease, and cognition is impaired. Inhibition of the STAT3 signaling pathway increases PSD95 to recover postsynaptic plasticity, thereby improving cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Benfenati F (2007) Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed 78(Suppl 1):58–66

    PubMed  Google Scholar 

  2. Sharma SK (2010) Protein acetylation in synaptic plasticity and memory. Neurosci Biobehav Rev 34(8):1234–1240. https://doi.org/10.1016/j.neubiorev.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  3. Brachya G, Yanay C, Linial M (2006) Synaptic proteins as multi-sensor devices of neurotransmission. BMC Neurosci 7 Suppl 1(Suppl 1):S4.https://doi.org/10.1186/1471-2202-7-S1-S4

  4. Kolos YA, Grigoriyev IP, Korzhevskyi DE (2015) A synaptic marker synaptophysin. Morfologiia 147(1):78–82

    PubMed  Google Scholar 

  5. Harper CB, Blumrich EM, Cousin MA (2021) Synaptophysin controls synaptobrevin-II retrieval via a cryptic C-terminal interaction site. J Biol Chem 296:100266. https://doi.org/10.1016/j.jbc.2021.100266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schiebler W, Jahn R, Doucet JP, Rothlein J, Greengard P (1986) Characterization of synapsin I binding to small synaptic vesicles. J Biol Chem 261(18):8383–8390

    Article  CAS  PubMed  Google Scholar 

  7. Valtorta F, Pennuto M, Bonanomi D, Benfenati F (2004) Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis. BioEssays 26(4):445–453. https://doi.org/10.1002/bies.20012

    Article  CAS  PubMed  Google Scholar 

  8. Gordon SL, Leube RE, Cousin MA (2011) Synaptophysin is required for synaptobrevin retrieval during synaptic vesicle endocytosis. J Neurosci 31(39):14032–14036. https://doi.org/10.1523/JNEUROSCI.3162-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaempf N, Kochlamazashvili G, Puchkov D, Maritzen T, Bajjalieh SM, Kononenko NL, Haucke V (2015) Overlapping functions of stonin 2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles. Proc Natl Acad Sci U S A 112(23):7297–7302. https://doi.org/10.1073/pnas.1501627112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kokotos AC, Harper CB, Marland J, Smillie KJ, Cousin MA, Gordon SL (2019) Synaptophysin sustains presynaptic performance by preserving vesicular synaptobrevin-II levels. J Neurochem 151(1):28–37. https://doi.org/10.1111/jnc.14797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gordon SL, Cousin MA (2014) The Sybtraps: control of synaptobrevin traffic by synaptophysin, α-synuclein and AP-180. Traffic 15(3):245–254. https://doi.org/10.1111/tra.12140

    Article  CAS  PubMed  Google Scholar 

  12. Park Y, Ryu JK (2018) Models of synaptotagmin-1 to trigger Ca(2+)-dependent vesicle fusion. FEBS Lett 592(21):3480–3492. https://doi.org/10.1002/1873-3468.13193

    Article  CAS  PubMed  Google Scholar 

  13. Chang CW, Hsiao YT, Jackson MB (2021) Synaptophysin regulates fusion pores and exocytosis mode in chromaffin cells. J Neurosci 41(16):3563–3578. https://doi.org/10.1523/JNEUROSCI.2833-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnár E, Lodge D, Jane DE (2013) The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 64:13–26. https://doi.org/10.1016/j.neuropharm.2012.06.051

    Article  CAS  PubMed  Google Scholar 

  15. Hsieh CP, Chen ST, Lee MY, Huang CM, Chen HH, Chan MH (2021) N, N-dimethylglycine protects behavioral disturbances and synaptic deficits induced by repeated ketamine exposure in mice. Neuroscience 472:128–137. https://doi.org/10.1016/j.neuroscience.2021.08.004

    Article  CAS  PubMed  Google Scholar 

  16. Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127(1):49–58. https://doi.org/10.1016/j.cell.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  17. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5(10):771–781. https://doi.org/10.1038/nrn1517

    Article  CAS  PubMed  Google Scholar 

  18. Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9(5):929–942. https://doi.org/10.1016/0896-6273(92)90245-9

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Etherington LA, Hafner AS, Belelli D, Coussen F, Delagrange P, Chaouloff F, Spedding M, Lambert JJ, Choquet D, Groc L (2013) Regulation of AMPA receptor surface trafficking and synaptic plasticity by a cognitive enhancer and antidepressant molecule. Mol Psychiatry 18(4):471–484. https://doi.org/10.1038/mp.2012.80

    Article  CAS  PubMed  Google Scholar 

  20. Abbasi B, Goldenholz DM (2019) Machine learning applications in epilepsy. Epilepsia 60(10):2037–2047. https://doi.org/10.1111/epi.16333

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lin CS, Tao PL, Jong YJ, Chen WF, Yang CH, Huang LT, Chao CF, Yang SN (2009) Prenatal morphine alters the synaptic complex of postsynaptic density 95 with N-methyl-D-aspartate receptor subunit in hippocampal CA1 subregion of rat offspring leading to long-term cognitive deficits. Neuroscience 158(4):1326–1337. https://doi.org/10.1016/j.neuroscience.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  22. Kakizawa S, Shibazaki M, Mori N (2012) Protein oxidation inhibits NO-mediated signaling pathway for synaptic plasticity. Neurobiol Aging 33(3):535–545. https://doi.org/10.1016/j.neurobiolaging.2010.04.016

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann HD, Kirsch M (2012) JAK2-STAT3 signaling: a novel function and a novel mechanism. JAKSTAT 1(3):191–193. https://doi.org/10.4161/jkst.20446

    Article  PubMed  PubMed Central  Google Scholar 

  24. Morrell MJ, McRobbie DW, Quest RA, Cummin AR, Ghiassi R, Corfield DR (2003) Changes in brain morphology associated with obstructive sleep apnea. Sleep Med 4(5):451–454. https://doi.org/10.1016/s1389-9457(03)00159-x

    Article  PubMed  Google Scholar 

  25. Cha J, Zea-Hernandez JA, Sin S, Graw-Panzer K, Shifteh K, Isasi CR, Wagshul ME, Moran EE, Posner J, Zimmerman ME, Arens R (2017) The effects of obstructive sleep apnea syndrome on the dentate gyrus and learning and memory in children. J Neurosci 37(16):4280–4288. https://doi.org/10.1523/JNEUROSCI.3583-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khuu MA, Pagan CM, Nallamothu T, Hevner RF, Hodge RD, Ramirez JM, Garcia AJ 3rd (2019) Intermittent hypoxia disrupts adult neurogenesis and synaptic plasticity in the dentate gyrus. J Neurosci 39(7):1320–1331. https://doi.org/10.1523/JNEUROSCI.1359-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wall AM, Corcoran AE, O’Halloran KD, O’Connor JJ (2014) Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis 62:8-17 https://doi.org/10.1016/j.nbd.2013.08.016

  28. Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P (2021) GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Nat Commun 12(1):4709. https://doi.org/10.1038/s41467-021-25058-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monaco SA, Gulchina Y, Gao WJ (2015) NR2B subunit in the prefrontal cortex: a double-edged sword for working memory function and psychiatric disorders. Neurosci Biobehav Rev 56:127–138. https://doi.org/10.1016/j.neubiorev.2015.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang MJ, Li YC, Snyder MA, Wang H, Li F, Gao WJ (2013) Group II metabotropic glutamate receptor agonist LY379268 regulates AMPA receptor trafficking in prefrontal cortical neurons. PLoS ONE 8(4):e61787. https://doi.org/10.1371/journal.pone.0061787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bustos FJ, Varela-Nallar L, Campos M, Henriquez B, Phillips M, Opazo C, Aguayo LG, Montecino M, Constantine-Paton M, Inestrosa NC, van Zundert B (2014) PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS ONE 9(4):e94037. https://doi.org/10.1371/journal.pone.0094037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hardingham GE (2006) 2B synaptic or extrasynaptic determines signalling from the NMDA receptor. J Physiol 572(Pt 3):614–615. https://doi.org/10.1113/jphysiol.2006.109603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li X, Wang C, Wang W, Yue C, Tang Y (2017) Neonatal exposure to BDE 209 impaired learning and memory, decreased expression of hippocampal core SNAREs and synaptophysin in adult rats. Neurotoxicology 59:40–48. https://doi.org/10.1016/j.neuro.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Zhao Q, Chen CH, Qin QZ, Zhou Z, Yu ZP (2014) Synaptophysin and the dopaminergic system in hippocampus are involved in the protective effect of rutin against trimethyltin-induced learning and memory impairment. Nutr Neurosci 17(5):222–229. https://doi.org/10.1179/1476830513Y.0000000085

    Article  CAS  PubMed  Google Scholar 

  35. Qi QR, Yang ZM (2014) Regulation and function of signal transducer and activator of transcription 3. World J Biol Chem 5(2):231–239. https://doi.org/10.4331/wjbc.v5.i2.231

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hindam MO, Sayed RH, Skalicka-Woźniak K, Budzyńska B, El Sayed NS (2020) Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a streptozotocin-induced rat model of sporadic Alzheimer’s disease: the role of JAK2/STAT3 and Nrf2/HO-1 signalling pathway modulation. Phytother Res 34(9):2351–2365. https://doi.org/10.1002/ptr.6686

    Article  CAS  PubMed  Google Scholar 

  37. Hristova M, Rocha-Ferreira E, Fontana X, Thei L, Buckle R, Christou M, Hompoonsup S, Gostelow N, Raivich G, Peebles D (2016) Inhibition of signal transducer and activator of transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem 136(5):981–994. https://doi.org/10.1111/jnc.13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reichenbach N, Delekate A, Plescher M, Schmitt F, Krauss S, Blank N, Halle A, Petzold GC (2019) Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer's disease model. EMBO Mol Med 11(2). https://doi.org/10.15252/emmm.201809665

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (81660194). The present study was also supported by the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China, 563003. We thank all the partners and staff who helped us in the process of this study.

Funding

The National Natural Science Foundation of China provided financial support in the form of grant funding (Grant No: 81660194). The sponsor had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Ethics declarations

Ethical approval

All the applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All the procedures performed in the studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Competing interests

All the authors certify that they have no affiliations with, or involvement in, any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, Z., Xu, L. et al. Inhibition of STAT3 signal pathway recovers postsynaptic plasticity to improve cognitive impairment caused by chronic intermittent hypoxia. Sleep Breath 27, 893–902 (2023). https://doi.org/10.1007/s11325-022-02671-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-022-02671-6

Keywords

Navigation