Skip to main content
Log in

An Efficient Automated Radiosynthesis and Bioactivity Confirmation of VMAT2 Tracer [18F]FP-(+)-DTBZ

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to optimize the radiolabeling method of [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ) to fulfill the demand of preclinical and clinical application.

Procedures

Optimized labeling conditions were performed by altering the molar ratio of precursor to base (P/B), base species, solvents, reaction temperature, reaction time, and precursor concentration through manual radiosynthesis of [18F]FP-(+)-DTBZ. The conditions with the highest radiochemical yield (RCY) were applied to automated radiosynthesis, and the crude product was purified with a Sep-Pak Plus C18 cartridge. Quality control and stability of [18F]FP-(+)-DTBZ were carried out by HPLC. In vitro cellular uptake and blocking assays were conducted in human neuroblastoma cell line SH-SY5Y. In vivo imaging with small animal positron emission tomography (microPET) was performed with Sprague–Dawley rats.

Results

Under the optimized conditions (P/K2CO3 = 1:8, heating at 120 °C for 3 min in dimethyl sulfoxide), an RCY of 88.7 % was obtained with 1.0 mg precursor. The optimized reaction conditions were successfully applied to an automated module and gave a high activity yield (AY) of 30–55 % in about 40 min with a > 99.0 % radiochemical purity (RCP) and a > 44.4 GBq/μmol molar activity (Am). Stability test displayed that the RCP retained > 98.0 % in 8 h in saline and in phosphate buffer saline (PBS, pH 7.4). In vitro cellular uptake assay showed accumulation of [18F]FP-(+)-DTBZ in SH-SY5Y cells, which could be significantly inhibited by vesicular monoamine transporter 2 (VMAT2) inhibitor DTBZ. MicroPET images of rat brain displayed that the striatum showed the highest uptake with a standardized uptake value (SUV) of 3.91 ± 0.30 at ~ 70 min. Co-injection with DTBZ (1.0 mg/kg) resulted in a 75 % decrease of the striatal SUV, confirming the specificity of [18F]FP-(+)-DTBZ to VMAT2.

Conclusions

We obtained an optimized radiolabeling method of [18F]FP-(+)-DTBZ and successfully applied it to a commercial available module. The automated synthesis gave a high AY and RCP of [18F]FP-(+)-DTBZ with high and specific binding to VMAT2, facilitating its routine application for VMAT2 tracing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Pogarell O, Koch W, Gildehaus FJ, Kupsch A, Lindvall O, Oertel WH, Tatsch K (2006) Long-term assessment of striatal dopamine transporters in Parkinsonian patients with intrastriatal embryonic mesencephalic grafts. Eur J Nucl Med Mol Imaging 33:407–411

    Article  Google Scholar 

  2. Miller GW, Erickson JD, Perez JT, Penland SN, Mash DC, Rye DB, Levey AI (1999) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol 156:138–148

    Article  CAS  Google Scholar 

  3. Goswami R, Ponde DE, Kung MP, Hou C, Kilbourn MR, Kung HF (2006) Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters. Nucl Med Biol 33:685–694

    Article  CAS  Google Scholar 

  4. Kalliokoski T, Tuomela J, Haavisto L, Forsback S, Snellman A, Helin S, Grönroos TJ, Solin O, Haaparanta-Solin M (2014) 6-[18F]fluoro-L-DOPA uptake in the rat pancreas is dependent on the tracer metabolism. Mol Imaging Biol 16:403–411

    Article  Google Scholar 

  5. Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, Ellis JR, Ackermann U, O’Keefe G, Jones G, Kung HF, Pontecorvo MJ, Skovronsky D, Rowe CC (2010) In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with 18F-AV-133. J Nucl Med 51:223–228

    Article  Google Scholar 

  6. Tsao HH, Lin KJ, Juang JH, Skovronsky DM, Yen TC, Wey SP, Kung MP (2010) Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenzazine (AV-133) to the vesicular monoamine transporter type 2 in rats. Nucl Med Biol 37:413–419

    Article  CAS  Google Scholar 

  7. Li X, Chen Z, Tang J, Liu C, Zou P, Huang H, Tan C, Yu H (2014) Synthesis and biological evaluation of 10-[11C]-dihydrotetrabenazine as a vesicular monoamine transporter 2 radioligand. Arch Pharm 347:313–319

    Article  CAS  Google Scholar 

  8. Strome EM, Cepeda IL, Sossi V, Doudet DJ (2006) Evaluation of the integrity of the dopamine system in a rodent model of Parkinson’s disease: small animal positron emission tomography compared to behavioral assessment and autoradiography. Mol Imaging Biol 8:292–299

    Article  Google Scholar 

  9. Alexander PK, Lie Y, Jones G, Sivaratnam C, Bozinvski S, Mulligan RS, Young K, Villemagne VL, Rowe CC (2017) Management impact of imaging brain vesicular monoamine transporter type 2 in clinically uncertain parkinsonian syndrome with [18F]-AV133 and PET. J Nucl Med 58:1815–1820

    Article  CAS  Google Scholar 

  10. Waldmann CM, Gomez A, Marchis P, Bailey ST, Momcilovic M, Jones AE, Shackelford DB, Sadeghi S (2018) An automated multidose synthesis of the potentiometric PET probe 4-[18F]fluorobenzyl-triphenylphosphonium ([18F]FBnTP). Mol Imaging Biol 20:205–212

    Article  CAS  Google Scholar 

  11. Kung MP, Hou C, Goswami R, Ponde DE, Kilbourn MR, Kung HF (2007) Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol 34:239–246

    Article  CAS  Google Scholar 

  12. Zhu L, Ploessl K, Kung HF (2014) PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev 43:6683–6691

    Article  CAS  Google Scholar 

  13. Weng CC, Huang SL, Chen ZA, Lin KJ, Hsiao IT, Yen TC, Kung MP, Wey SP, Hsu CH (2017) [18F]FP-(+)-DTBZ PET study in a lactacystin-treated rat model of Parkinson disease. Ann Nucl Med 31:506–513

    Article  CAS  Google Scholar 

  14. Chen Z, Tang J, Liu C, Li X, Huang H, Xu X, Yu H (2016) Effects of anesthetics on vesicular monoamine transporter type 2 binding to [18F]-FP-(+)-DTBZ: a biodistribution study in rat brain. Nucl Med Biol 43:124–129

    Article  CAS  Google Scholar 

  15. Zhu L, Liu Y, Plossl K et al (2010) An improved radiosynthesis of [18F]AV-133: a PET imaging agent for vesicular monoamine transporter 2. Nucl Med Biol 37:133–141

    Article  CAS  Google Scholar 

  16. Lin SC, Lin KJ, Hsiao IT, Hsieh CJ, Lin WY, Lu CS, Wey SP, Yen TC, Kung MP, Weng YH (2014) In vivo detection of monoaminergic degeneration in early Parkinson disease by 18F-9-fluoropropyl-(+)-dihydrotetrabenzazine PET. J Nucl Med 55:73–79

    Article  CAS  Google Scholar 

  17. Wood H (2014) Parkinson disease: [18F]DTBZ PET tracks dopaminergic degeneration in patients with Parkinson disease. Nat Rev Neurol 10:305

    Article  Google Scholar 

  18. Hsiao IT, Weng YH, Hsieh CJ, Lin WY, Wey SP, Kung MP, Yen TC, Lu CS, Lin KJ (2014) Correlation of Parkinson disease severity and [18F]-DTBZ positron emission tomography. JAMA Neurol 71:758–766

    Article  Google Scholar 

  19. Naganawa M, Lim K, Nabulsi NB, Lin SF, Labaree D, Ropchan J, Herold KC, Huang Y, Harris P, Ichise M, Cline GW, Carson RE (2018) Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of [18F]-FP-DTBZ in healthy subjects and patients with type 1 diabetes. Mol Imaging Biol 20:835–845

    Article  CAS  Google Scholar 

  20. Lin KJ, Weng YH, Wey SP, Hsiao IT, Lu CS, Skovronsky D, Chang HP, Kung MP, Yen TC (2010) Whole-body biodistribution and radiation dosimetry of [18F]-FP-(+)-DTBZ ([18F]-AV-133): a novel vesicular monoamine transporter 2 imaging agent. J Nucl Med 51:1480–1485

    Article  CAS  Google Scholar 

  21. Lee S-J, Oh S-J, Chi D-Y, Moon DH, Ryu JS (2012) High yielding [18F]fluorination method by fine control of the base. Bull Kor Chem Soc 33:2177–2180

    Article  CAS  Google Scholar 

  22. Nebel N, Maschauer S, Hocke C, Hübner H, Gmeiner P, Prante O (2016) Optimization and synthesis of an18F-labeled dopamine D3receptor ligand using [18F]fluorophenylazocarboxylictert-butylester. J Label Compd Radiopharm 59:48–53

    Article  CAS  Google Scholar 

  23. Lee SJ, Hyun JS, Oh SJ, Yu KH, Ryu JS (2013) Development of a new precursor-minimizing base control method and its application for the automated synthesis and SPE purification of [18F]fluoromisonidazole ([18F]FMISO). J Label Compd Radiopharm 56:731–735

    Article  CAS  Google Scholar 

  24. Zheng P, Lieberman BP, Choi SR, Plöessl K, Kung HF (2011) Synthesis and biological evaluation of 3-alkyl-dihydrotetrabenazine derivatives as vesicular monoamine transporter-2 (VMAT2) ligands. Bioorg Med Chem Lett 21:3435–3438

    Article  CAS  Google Scholar 

  25. acobson O, Kiesewetter DO, Chen X (2015) Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem 26:1–18

    Article  Google Scholar 

  26. Lee SJ, Oh SJ, Chi DY, Kang SH, Kil HS, Kim JS, Moon DH (2007) One-step high-radiochemical-yield synthesis of [18F]-FP-CIT using a protic solvent system. Nucl Med Biol 34:345–351

    Article  CAS  Google Scholar 

  27. Seo J-W, Lee B-S, Lee S-J, Oh SJ, Chi DY (2011) Fast and easy drying method for the preparation of activated [18F]fluoride using polymer cartridge. Bull Kor Chem Soc 32:71–76

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (NO. 2016YFC1306600), the National Natural Science Foundation of China (NO. 81671723, 81801742), the Jiangsu Provincial Natural Science Foundation (NO. BK20161138), the Program for Jiangsu Provincial High-Level Talents in Six Major Industries (NO. 2016-WSN-037), the Jiangsu Provincial Key Medical Discipline (NO. ZDXKA2016017), and the Wuxi Municipal Science and Technology Development Fund (NO. WX18IIAN048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Chen.

Ethics declarations

All animal experiments were approved by the Animal Care and Ethics Committee of Jiangsu Institute of Nuclear Medicine.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Liu, C., Tang, J. et al. An Efficient Automated Radiosynthesis and Bioactivity Confirmation of VMAT2 Tracer [18F]FP-(+)-DTBZ. Mol Imaging Biol 22, 265–273 (2020). https://doi.org/10.1007/s11307-019-01379-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01379-6

Key words

Navigation