Skip to main content

Advertisement

Log in

An Automated Multidose Synthesis of the Potentiometric PET Probe 4-[18F]Fluorobenzyl-Triphenylphosphonium ([18F]FBnTP)

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was the automated synthesis of the mitochondrial membrane potential sensor 4-[18F]fluorobenzyl-triphenylphosphonium ([18F]FBnTP) on a commercially available synthesizer in activity yields (AY) that allow for imaging of multiple patients.

Procedures

A three-pot, four-step synthesis was implemented on the ELIXYS FLEX/CHEM radiosynthesizer (Sofie Biosciences) and optimized for radiochemical yield (RCY), radiochemical purity (RCP) as well as chemical purity during several production runs (n = 24). The compound was purified by solid-phase extraction (SPE) with a Sep-Pak Plus Accell CM cartridge, thereby avoiding HPLC purification.

Results

Under optimized conditions, AY of 1.4–2.2 GBq of [18F]FBnTP were obtained from 9.4 to 12.0 GBq [18F]fluoride in 90–92 min (RCY = 28.6 ± 5.1 % with n = 3). Molar activities ranged from 80 to 99 GBq/μmol at the end of synthesis. RCP of final formulations was > 99 % at the end of synthesis and > 95 % after 8 h. With starting activities of 23.2–33.0 GBq, RCY decreased to 16.1 ± 0.4 % (n = 3). The main cause of the decline in RCY when high amounts of [18F]fluoride are used is radiolytic decomposition of [18F]FBnTP during SPE purification.

Conclusions

In initial attempts, the probe was synthesized with RCY < 0.6 % when starting activities up to 44.6 GBq were used. Rapid radiolysis of the intermediate 4-[18F]fluorobenzaldehyde and the final product [18F]FBnTP during purification was identified as the main cause for low yields in high-activity runs. Radiolytic decomposition was hindered by the addition of radical scavengers during synthesis, purification, and formulation, thereby improving AY and RCP. The formulated probe in injectable form was synthesized without the use of HPLC and passed all applicable quality control tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1

Similar content being viewed by others

References

  1. Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4:R1–R15

    Article  PubMed  Google Scholar 

  2. Dorn GW, Vega RB, Kelly DP (2015) Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29:1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Avalos JL (2017) Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WIREs Syst Biol Med 9(n/a):e1373. https://doi.org/10.1002/wsbm.1373

    Article  Google Scholar 

  6. Ehrenberg B, Montana V, Wei MD et al (1988) Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys J 53:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fukuda H, Syrota P, Charbonneau P et al (1986) Use of 11C-triphenylmethylphosphonium for the evaluation of membrane potential in the heart by positron-emission tomography. Eur J Nucl Med 11:478–483

    CAS  PubMed  Google Scholar 

  8. Madar I, Anderson JH, Szabo Z et al (1999) Enhanced uptake of [11C]TPMP in canine brain tumor: a PET study. J Nucl Med 40:1180–1185

    CAS  PubMed  Google Scholar 

  9. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–9233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ravert HT, Madar I, Dannals RF (2004) Radiosynthesis of 3-[18F]fluoropropyl and 4-[18F]fluorobenzyl triarylphosphonium ions. J Label Compd Radiopharm 47:469–476

    Article  CAS  Google Scholar 

  11. Madar I, Huang Y, Ravert H et al (2009) Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med 50:774–780

    Article  CAS  PubMed  Google Scholar 

  12. Madar I, Isoda T, Finley P, Angle J, Wahl R (2011) 18F-fluorobenzyl triphenyl phosphonium: a noninvasive sensor of brown adipose tissue thermogenesis. J Nucl Med 52:808–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Higuchi T, Fukushima K, Rischpler C et al (2011) Stable delineation of the ischemic area by the PET perfusion tracer 18F-fluorobenzyl triphenyl phosphonium after transient coronary occlusion. J Nucl Med 52:965–969

    Article  CAS  PubMed  Google Scholar 

  14. Madar I, Ravert HT, Du Y et al (2006) Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 47:1359–1366

    CAS  PubMed  Google Scholar 

  15. Ravert HT, Holt DP, Dannals RF (2014) A microwave radiosynthesis of the 4-[18F]-fluorobenzyltriphenylphosphonium ion. J Label Compd Radiopharm 57:695–698

    Article  CAS  Google Scholar 

  16. Zhang Z, Zhang C, Lau J et al (2016) One-step synthesis of 4-[18F]fluorobenzyltriphenylphosphonium cation for imaging with positron emission tomography. J Label Compd Radiopharm 59:467–471

    Article  CAS  Google Scholar 

  17. Sanford MS, Scott PJH (2016) Moving metal-mediated 18F-fluorination from concept to clinic. ACS Cent Sci 2:128–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lazari M, Collins J, Shen B et al (2014) Fully automated production of diverse 18F-labeled PET tracers on the ELIXYS multireactor radiosynthesizer without hardware modification. J Nucl Med Technol 42:203–210

    Article  PubMed  PubMed Central  Google Scholar 

  19. Claggett SB, Quinn KM, Lazari M et al (2013) Simplified programming and control of automated radiosynthesizers through unit operations. Eur J Nucl Med Mol Imaging Res 3:53

    Google Scholar 

  20. Speranza A, Ortosecco G, Castaldi E et al (2009) Fully automated synthesis procedure of 4-[18F]fluorobenzaldehyde by commercial synthesizer: amino-oxi peptide labelling prosthetic group. Appl Radiat Isot 67:1664–1669

    Article  CAS  PubMed  Google Scholar 

  21. Poethko T, Schottelius M, Thumshirn G et al (2004) Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 45:892–902

    CAS  PubMed  Google Scholar 

  22. Scott PJH, Hockley BG, Kung HF et al (2009) Studies into radiolytic decomposition of fluorine-18 labeled radiopharmaceuticals for positron emission tomography. Appl Radiat Isot 67:88–94

    Article  CAS  PubMed  Google Scholar 

  23. Schueller MJ, Alexoff DL, Schlyer DJ (2007) Separating long-lived metal ions from 18F during H2 18O recovery. Nucl Instrum Methods Phys Res Sect B 261:795–799

    Article  CAS  Google Scholar 

  24. Iwata R, Pascali C, Bogni A et al (2000) A new, convenient method for the preparation of 4-[18F]fluorobenzyl halides. Appl Radiat Isot 52:87–92

    Article  CAS  PubMed  Google Scholar 

  25. Rodnick ME, Brooks AF, Hockley BG et al (2013) A fully-automated one-pot synthesis of [18F]fluoromethylcholine with reduced dimethylaminoethanol contamination via [18F]fluoromethyl tosylate. Appl Radiat Isot 78:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su D, Cheng Y, Liu M et al (2013) Comparison of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 8:e54505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Michael E. Phelps for support and guidance with this study; Dr. Roger Slavik, Krzysztof Bobinski, and Daniel Yeh for providing [18F]fluoride; Dr. Jason Lee, Dr. Tove Olafsen, and Charles Zamilpa for their help with the small animal imaging; and Dr. Michael van Dam, Jeffrey Collins as well as Krzysztof Bobinski for valuable technical input.

Funding

The authors gratefully acknowledge the support from NIH through program, research, and training grants (CA186842, CA208642 and CA086306) and the support from the Department of Energy (DE-SC0012353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Sadeghi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 187 kb)

ESM 2

(PDF 227 kb)

ESM 3

(PDF 205 kb)

ESM 4

(PDF 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldmann, C.M., Gomez, A., Marchis, P. et al. An Automated Multidose Synthesis of the Potentiometric PET Probe 4-[18F]Fluorobenzyl-Triphenylphosphonium ([18F]FBnTP). Mol Imaging Biol 20, 205–212 (2018). https://doi.org/10.1007/s11307-017-1119-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1119-1

Key words

Navigation