Skip to main content
Log in

Imaging α4β2 Nicotinic Acetylcholine Receptors (nAChRs) in Baboons with [18F]XTRA, a Radioligand with Improved Specific Binding in Extra-Thalamic Regions

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Currently available positron-emitting radiotracers for imaging of the α4β2 subtype of nicotinic acetylcholine receptors (nAChRs) exhibit high and moderate specific binding in the thalamus and extra-thalamic brain regions, respectively. In many neuropsychiatric disorders, α4β2-nAChRs are altered in the extra-thalamic brain regions, but not necessarily in the thalamus. The purpose of this study was to evaluate [18F]XTRA, a new α4β2-nAChR positron emission tomography (PET) radioligand with improved specific binding in extra-thalamic brain regions, in non-human primates.

Procedures

The regional distribution of [18F]XTRA in the brain of Papio anubis baboons was evaluated in baseline and blocking experiments. Various PET modeling procedures were used for determination of volume of distribution (V T), binding potential (BPND), and receptor occupancy. Radiation dosimetry for [18F]XTRA was studied in male CD-1 mice and extrapolated to human dosimetry estimates using OLINDA/EXM software.

Results

[18F]XTRA was synthesized using an automated radiochemistry module with 25 % decay-corrected radiochemical yield. [18F]XTRA readily enters the baboon brain and specifically labels α4β2-nAChRs. Mathematical modeling demonstrates high binding potential values (BPND = 7 and 1.3 in the thalamus and frontal cortex, respectively). A PET scanning time of 90–120 min was sufficient to obtain stable V T values in the extra-thalamic regions. The extrapolated human effective dose was 0.041 mSv/MBq (0.15 Rem/mCi).

Conclusion

[18F]XTRA exhibits improved specific binding in the baboon brain including extra-thalamic regions and it is considered radiologically acceptable for human studies. Further evaluations of [18F]XTRA in human subjects are under way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  CAS  PubMed  Google Scholar 

  2. Pimlott SL, Piggott M, Owens J, et al. (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[125I]-A-85380. Neuropsychopharmacology 29:108–116

    Article  CAS  PubMed  Google Scholar 

  3. Breese CR, Lee MJ, Adams CE, et al. (2000) Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 23:351–364

    Article  CAS  PubMed  Google Scholar 

  4. De Luca V, Voineskos S, Wong G, Kennedy JL (2006) Genetic interaction between alpha4 and beta2 subunits of high affinity nicotinic receptor: analysis in schizophrenia. Exp Brain Res 174:292–296

    Article  PubMed  Google Scholar 

  5. Whitehouse PJ, Martino AM, Wagster MV, et al. (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology 38:720–723

    Article  CAS  PubMed  Google Scholar 

  6. Court J, Martin-Ruiz C, Piggott M, et al. (2001) Nicotinic receptor abnormalities in Alzheimer’s disease. Biol Psychiatry 49:175–184

    Article  CAS  PubMed  Google Scholar 

  7. Gotti C, Moretti M, Bohr I, et al. (2006) Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer’s disease, Parkinson’s disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol Dis 23:481–489

    Article  CAS  PubMed  Google Scholar 

  8. Teaktong T, Graham AJ, Court JA, et al. (2004) Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J Neurol Sci 225:39–49

    Article  CAS  PubMed  Google Scholar 

  9. Mash DC, Flynn DD, Potter LT (1985) Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228:1115–1117

    Article  CAS  PubMed  Google Scholar 

  10. Meyer PM, Tiepolt S, Barthel H, et al. (2014) Radioligand imaging of alpha4beta2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease. Q J Nucl Med Mol Imaging

  11. Keller C, Kadir A, Forsberg A, et al. (2011) Long-term effects of galantamine treatment on brain functional activities as measured by PET in Alzheimer’s disease patients. J Alzheimers Dis 24:109–123

    CAS  PubMed  Google Scholar 

  12. Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    Article  CAS  PubMed  Google Scholar 

  13. Gotti C, Moretti M, Gaimarri A, et al. (2007) Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol 74:1102–1111

    Article  CAS  PubMed  Google Scholar 

  14. Horti AG, Wong DF (2009) Clinical perspective and recent development of PET radioligands for imaging nAChR receptors. PET Clinics 4:89–100

  15. Innis RB, Cunningham VJ, Delforge J, et al. (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  PubMed  Google Scholar 

  16. Chefer SI, London ED, Koren AO, et al. (2003) Graphical analysis of 2-[18F]FA binding to nicotinic acetylcholine receptors in rhesus monkey brain. Synapse 48:25–34

    Article  CAS  PubMed  Google Scholar 

  17. Bottlaender M, Valette H, Roumenov D, et al. (2003) Biodistribution and radiation dosimetry of 18F-fluoro-A-85380 in healthy volunteers. J Nucl Med 44:596–601

    CAS  PubMed  Google Scholar 

  18. Gao Y, Kuwabara H, Spivak CE, et al. (2008) Discovery of (−)-7-methyl-2-exo-[3′-(6-[18F]fluoropyridin-2-yl)-5′-pyridinyl]-7-azabicyclo[2.2.1]heptane, a radiolabeled antagonist for cerebral nicotinic acetylcholine receptor (Π± 4Î22-nAChR) with optimal positron emission tomography imaging properties. J Med Chem 51:4751–4764

    Article  CAS  PubMed  Google Scholar 

  19. Wong DF, Kuwabara H, Kim J, et al. (2012) Positron emission tomography (PET) imaging of high-affinity α4β2 nicotinic acetylcholine receptors in humans with [18F]AZAN, a radioligand with optimal brain kinetics. J Nucl Med 54:1308–1314

    Article  Google Scholar 

  20. Kuwabara H, Wong DF, Gao Y, et al. (2012) PET imaging of nicotinic acetylcholine receptors in baboons with 18F-AZAN, a radioligand with improved brain kinetics. J Nucl Med 53:121–129

    Article  CAS  PubMed  Google Scholar 

  21. Rahmim A, Cheng JC, Blinder S, et al. (2005) Statistical dynamic image reconstruction in state-of-the-art high-resolution PET. Phys Med Biol 50:4887–4912

    Article  PubMed  Google Scholar 

  22. Sossi V, De Jong M, Barker W, et al. (2005) The second generation HRRT: a multi-centre scanner performance investigation [abstract]. Record 4:2195–2199P

    Google Scholar 

  23. Ashburner J, Friston KJ (2003) High-dimensional image warping. In: Frackowiak RSJ, Friston KJ, Frith C, et al. (eds) Human brain function. Academic Press, New York, pp. 673–694

    Google Scholar 

  24. Ashburner J, Friston K (2003) Rigid body registration. In: Frackowiak RSJ, Friston KJ, Frith C, et al. (eds) Human brain function. Academic Press, New York, pp. 635–654

    Google Scholar 

  25. Logan J, Fowler JS, Volkow ND, et al. (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    Article  CAS  PubMed  Google Scholar 

  26. Cunningham VJ, Rabiner EA, Slifstein M, et al. (2010) Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab 30:46–50

    Article  PubMed  Google Scholar 

  27. Mathews WB, Nakamoto Y, Abraham EH, et al. (2005) Synthesis and biodistribution of [11C]adenosine 5′-monophosphate ([11C]AMP). Mol Imaging Biol 7:203–208

    Article  PubMed  Google Scholar 

  28. Barrett PH, Bell BM, Cobelli C, et al. (1998) SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism 47:484–492

    Article  CAS  PubMed  Google Scholar 

  29. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  30. Akaike H (1974) A new look at statistical model identification. IEEE Trans Automat Contr AU- 19:716–722

    Article  Google Scholar 

  31. Marutle A, Warpman U, Bogdanovic N, Nordberg A (1998) Regional distribution of subtypes of nicotinic receptors in human brain and effect of aging studied by (+/−)-[3H]epibatidine. Brain Res 801:143–149

    Article  CAS  PubMed  Google Scholar 

  32. Turner JR, Ortinski PI, Sherrard RM, Kellar KJ (2011) Cerebellar nicotinic cholinergic receptors are intrinsic to the cerebellum: implications for diverse functional roles. Cerebellum 10:748–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bois F, Gallezot JD, Zheng MQ, et al. (2015) Evaluation of [(18)F]-(−)-norchlorofluorohomoepibatidine ([(18)F]-(−)-NCFHEB) as a PET radioligand to image the nicotinic acetylcholine receptors in non-human primates. Nucl Med Biol 42:570–577

    Article  CAS  PubMed  Google Scholar 

  34. Kimes AS, Chefer SI, Matochik JA, et al. (2008) Quantification of nicotinic acetylcholine receptors in the human brain with PET: bolus plus infusion administration of 2-[18F]F-A85380. NeuroImage 39:717–727

    Article  PubMed  Google Scholar 

  35. Brody AL, Mandelkern MA, London ED, et al. (2006) Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chefer SI, Pavlova OA, Zhang Y, et al. (2008) NIDA522131, a new radioligand for imaging extrathalamic nicotinic acetylcholine receptors: in vitro and in vivo evaluation. J Neurochem 104:306–315

    CAS  PubMed  Google Scholar 

  37. Hillmer AT, Wooten DW, Slesarev MS, et al. (2012) PET imaging of alpha4beta2* nicotinic acetylcholine receptors: quantitative analysis of 18F-nifene kinetics in the nonhuman primate. J Nucl Med 53:1471–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hillmer AT, Wooten DW, Moirano J, et al. (2011) Specific alpha4beta2 nicotinic acetylcholine receptor binding of [F-18]nifene in the rhesus monkey. Synapse 65:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pichika R, Easwaramoorthy B, Collins D, et al. (2006) Nicotinic alpha4beta2 receptor imaging agents: part II. Synthesis and biological evaluation of 2-[18F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nucl Med Biol 33:295–304

    Article  CAS  PubMed  Google Scholar 

  40. Hillmer AT, Wooten DW, Slesarev MS, et al. (2013) Measuring alpha4beta2* nicotinic acetylcholine receptor density in vivo with [(18)F]nifene PET in the nonhuman primate. J Cereb Blood Flow Metab 33:1806–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sabri O, Becker GA, Meyer PM, et al. (2015) First-in-human PET quantification study of cerebral alpha4beta2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-[(18)F]Flubatine. NeuroImage 118:199–208

    Article  CAS  PubMed  Google Scholar 

  42. Vaupel DB, Tella SR, Huso DL, et al. (2005) Pharmacological and toxicological evaluation of 2-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-F-A-85380), a ligand for imaging cerebral nicotinic acetylcholine receptors with positron emission tomography. J Pharmacol Exp Ther 312:355–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Paige Finley for the help with animal experiments, Karen Edmonds for PET scanner operation, Alimamy Kargbo for HPLC analysis of radiometabolites and Julia Buchanan for editorial help. This research was supported by NIH grant AG037298.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Kuwabara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwabara, H., Gao, Y., Stabin, M. et al. Imaging α4β2 Nicotinic Acetylcholine Receptors (nAChRs) in Baboons with [18F]XTRA, a Radioligand with Improved Specific Binding in Extra-Thalamic Regions. Mol Imaging Biol 19, 280–288 (2017). https://doi.org/10.1007/s11307-016-0999-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0999-9

Key words

Navigation