Skip to main content
Log in

Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

nAChR:

Nicotinic cholinergic receptor

NE:

Norepinephrine

EB:

Epibatidine

CGC:

Cerebellar granule cell

References

  1. Lindstrom J. Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol. 1997;15(2):193–222.

    Article  PubMed  CAS  Google Scholar 

  2. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006;27(9):482–91.

    Article  PubMed  CAS  Google Scholar 

  3. Tribollet E et al. Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience. 2004;124(2):405–20.

    Article  PubMed  CAS  Google Scholar 

  4. Turner JR, Kellar KJ. Nicotinic cholinergic receptors in the rat cerebellum: multiple heteromeric subtypes. J Neurosci. 2005;25(40):9258–65.

    Article  PubMed  CAS  Google Scholar 

  5. Didier M et al. Characterization of nicotinic acetylcholine receptors expressed in primary cultures of cerebellar granule cells. Brain Res Mol Brain Res. 1995;30(1):17–28.

    Article  PubMed  CAS  Google Scholar 

  6. Graham A et al. Immunohistochemical localisation of nicotinic acetylcholine receptor subunits in human cerebellum. Neuroscience. 2002;113(3):493–507.

    Article  PubMed  CAS  Google Scholar 

  7. De Filippi G, Baldwinson T, Sher E. Evidence for nicotinic acetylcholine receptor activation in rat cerebellar slices. Pharmacol Biochem Behav. 2001;70(4):447–55.

    Article  PubMed  Google Scholar 

  8. Rossi DJ, Hamann M, Attwell D. Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol. 2003;548(Pt 1):97–110.

    Article  PubMed  CAS  Google Scholar 

  9. O’Leary KT, Leslie FM. Developmental regulation of nicotinic acetylcholine receptor-mediated [3H]norepinephrine release from rat cerebellum. J Neurochem. 2003;84(5):952–9.

    Article  PubMed  Google Scholar 

  10. Court JA et al. Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat. 2000;20(3–4):281–98.

    Article  PubMed  CAS  Google Scholar 

  11. Lee M et al. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain. 2002;125(Pt 7):1483–95.

    Article  PubMed  CAS  Google Scholar 

  12. Martin-Ruiz CM et al. Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res. 2004;123(1–2):81–90.

    Article  PubMed  CAS  Google Scholar 

  13. Perry EK et al. Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry. 2001;158(7):1058–66.

    Article  PubMed  CAS  Google Scholar 

  14. Flores CM et al. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol. 1992;41(1):31–7.

    PubMed  CAS  Google Scholar 

  15. Rogers SW et al. The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. J Neurosci. 1992;12(12):4611–23.

    PubMed  CAS  Google Scholar 

  16. Marritt AM et al. Nicotinic cholinergic receptors in the rat retina: simple and mixed heteromeric subtypes. Mol Pharmacol. 2005;68(6):1656–68.

    PubMed  CAS  Google Scholar 

  17. Yeh JJ et al. Neuronal nicotinic acetylcholine receptor alpha3 subunit protein in rat brain and sympathetic ganglion measured using a subunit-specific antibody: regional and ontogenic expression. J Neurochem. 2001;77(1):336–46.

    Article  PubMed  CAS  Google Scholar 

  18. Whiting P, Lindstrom J. Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc Natl Acad Sci USA. 1987;84(2):595–9.

    Article  PubMed  CAS  Google Scholar 

  19. Gonzalez MM, Debilly G, Valatx JL. Noradrenaline neurotoxin DSP-4 effects on sleep and brain temperature in the rat. Neurosci Lett. 1998;248(2):93–6.

    Article  PubMed  CAS  Google Scholar 

  20. Stockmeier CA, Kellar KJ. Serotonin depletion unmasks serotonergic component of [3H]dihydroalprenolol binding in rat brain. Mol Pharmacol. 1989;36(6):903–11.

    PubMed  CAS  Google Scholar 

  21. Desclin J. Early terminal degeneration of cerebellar climbing fibres after destruction of the inferior olive in the rat. Synaptic relationships in the molecular layer. Anat Embryol. 1976;149:87–112.

    Article  PubMed  CAS  Google Scholar 

  22. Cicirata F et al. Different pontine projections to the two sides of the cerebellum. Brain Res Rev. 2005;49:280–94.

    Article  PubMed  Google Scholar 

  23. Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781–92.

    Article  PubMed  CAS  Google Scholar 

  24. Murase K, Ryu PD, Randic M. Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett. 1989;103(1):56–63.

    Article  PubMed  CAS  Google Scholar 

  25. Hevers W, Luddens H. Pharmacological heterogeneity of gamma-aminobutyric acid receptors during development suggests distinct classes of rat cerebellar granule cells in situ. Neuropharmacology. 2002;42(1):34–47.

    Article  PubMed  CAS  Google Scholar 

  26. Bishop GA, Ho RH. The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res. 1985;331(2):195–207.

    Article  PubMed  CAS  Google Scholar 

  27. Luetje CW, Patrick J. Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci. 1991;11(3):837–45.

    PubMed  CAS  Google Scholar 

  28. Papke RL, Heinemann SF. Partial agonist properties of cytisine on neuronal nicotinic receptors containing the beta 2 subunit. Mol Pharmacol. 1994;45(1):142–9.

    PubMed  CAS  Google Scholar 

  29. Kawa K. Acute synaptic modulation by nicotinic agonists in developing cerebellar Purkinje cells of the rat. J Physiol. 2002;538(Pt 1):87–102.

    Article  PubMed  CAS  Google Scholar 

  30. Kondo S, Marty A. Synaptic currents at individual connections among stellate cells in rat cerebellar slices. J Physiol. 1998;509(Pt 1):221–32.

    Article  PubMed  CAS  Google Scholar 

  31. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4(5):467–75.

    PubMed  CAS  Google Scholar 

  32. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci. 2005;6(3):215–29.

    Article  PubMed  CAS  Google Scholar 

  33. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78(3–5):272–303.

    Article  PubMed  Google Scholar 

  34. Fornai F et al. Region- and neurotransmitter-dependent species and strain differences in DSP-4-induced monoamine depletion in rodents. Neurodegeneration. 1996;5(3):241–9.

    Article  PubMed  CAS  Google Scholar 

  35. Nguyen HN, Rasmussen BA, Perry DC. Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. J Pharmacol Exp Ther. 2003;307(3):1090–7.

    Article  PubMed  CAS  Google Scholar 

  36. Cavelier P et al. Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog Biophys Mol Biol. 2005;87(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  37. Middleton S et al. High-frequency network oscillations in cerebellar cortex. Neuron. 2008;58:763–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stefano Vicini for helpful discussions about the data presented here. We also thank Drs. Scott Rogers and Lorise Gahring (University of Utah, USA) and Drs. Barry Wolfe and Robert Yasuda (Georgetown University, USA) for providing us with antisera to several nicotinic receptor subunits. This study was supported by NIH grant DA012976 and NIH Training grant NIH-T32-NS41218.

Conflict of Interest

None of the authors have a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Kellar.

Additional information

Jill R. Turner and Pavel I. Ortinski contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, J.R., Ortinski, P.I., Sherrard, R.M. et al. Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles. Cerebellum 10, 748–757 (2011). https://doi.org/10.1007/s12311-011-0285-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0285-y

Keywords

Navigation