Skip to main content

Advertisement

Log in

Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Creatine (Cr) is a major metabolite in the bioenergetic system. Measurement of Cr using conventional MR spectroscopy (MRS) suffers from low spatial resolution and relatively long acquisition times. Creatine chemical exchange saturation transfer (CrCEST) magnetic resonance imaging (MRI) is an emerging molecular imaging method for tissue Cr measurements. Our previous study showed that the CrCEST contrast, obtained through multicomponent Z-spectral fitting, was lower in tumors compared to normal brain, which further reduced with tumor progression. The current study was aimed to investigate if CrCEST MRI can also be useful for differentiating gliomas with different degrees of aggressiveness.

Procedures

Intracranial 9L gliosarcoma and F98 glioma bearing rats with matched tumor size were scanned with a 9.4 T MRI scanner at two time points. CEST Z-spectra were collected using a customized sequence with a frequency-selective rectangular saturation pulse (B1 = 50 Hz, duration = 3 s) followed by a single-shot readout. Z spectral data were fitted pixel-wise with five Lorentzian functions, and maps of CrCEST peak amplitude, linewidth, and integral were produced. For comparison, single-voxel proton MR spectroscopy (1H-MRS) was performed to quantify and compare the total Cr concentration in the tumor.

Results

CrCEST contrasts decreased with tumor progression from weeks 3 to 4 in both 9L and F98 phenotypes. More importantly, F98 tumors had significantly lower CrCEST integral compared to 9L tumors. On the other hand, integrals of other Z-spectral components were unable to differentiate both tumor progression and phenotype with limited sample size.

Conclusions

Given that F98 is a more aggressive tumor than 9L, this study suggests that CrCEST MRI may help differentiate gliomas with different aggressiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bleyer WA (1999) Epidemiologic impact of children with brain tumors. Childs Nerv Syst 15:758–763

    Article  CAS  PubMed  Google Scholar 

  2. Panigrahy A, Bluml S (2009) Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol 24:1343–1365

    Article  PubMed  Google Scholar 

  3. Allison GT, Fujiwara T (2002) The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity. Clin Biomech 17:464–469

    Article  CAS  Google Scholar 

  4. Lin A, Bluml S, Mamelak AN (1999) Efficacy of proton magnetic resonance spectroscopy in clinical decision making for patients with suspected malignant brain tumors. J Neurooncol 45:69–81

    Article  CAS  PubMed  Google Scholar 

  5. Wong ET, Jackson EF, Hess KR et al (1998) Correlation between dynamic MRI and outcome in patients with malignant gliomas. Neurology 50:777–781

    Article  CAS  PubMed  Google Scholar 

  6. Dean BL, Drayer BP, Bird CR et al (1990) Gliomas: classification with MR imaging. Radiology 174:411–415

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469

    Article  CAS  PubMed  Google Scholar 

  8. Kondziolka D, Lunsford LD, Martinez AJ (1993) Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 79:533–536

    Article  CAS  PubMed  Google Scholar 

  9. Ginsberg LE, Fuller GN, Hashmi M et al (1998) The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol 49:436–440

    Article  CAS  PubMed  Google Scholar 

  10. Forsen S, Hoffman R (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901

    Article  CAS  Google Scholar 

  11. Wolff S, Balaban R (1990) NMR imaging of labile proton-exchange. J Magn Reson 86:164–169

    CAS  Google Scholar 

  12. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87

    Article  CAS  PubMed  Google Scholar 

  13. Sherry AD, Woods M (2008) Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Ann Rev Biomed Eng 10:391–411

    Article  CAS  Google Scholar 

  14. Zhou J, van Zijl PC (2006) Chemical exchange saturation transfer imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc 48:109–136

    Article  CAS  Google Scholar 

  15. van Zijl PC, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65:927–948

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kogan F, Hariharan H, Reddy R (2013) Chemical Exchange Saturation Transfer (CEST) imaging: description of technique and potential clinical applications. Curr Radiol Rep 1:102–114

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cai K, Haris M, Singh A et al (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haris M, Nanga RP, Singh A et al (2012) Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed 25:1305–1309

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, Lal B, Wilson DA et al (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126

    Article  PubMed  Google Scholar 

  20. van Zijl PC, Jones CK, Ren J et al (2007) MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A 104:4359–4364

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ling W, Regatte RR, Navon G et al (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walker-Samuel S, Ramasawmy R, Torrealdea F et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19:1067–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai K, Singh A, Roalf DR et al (2013) Mapping glutamate in subcortical brain structures using high-resolution GluCEST MRI. NMR Biomed 26:1278–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haris M, Nath K, Cai K et al (2013) Imaging of glutamate neurotransmitter alterations in Alzheimer’s disease. NMR Biomed 26:386–391

    Article  CAS  PubMed  Google Scholar 

  25. Haris M, Singh A, Cai K et al (2014) High resolution mapping of modafinil induced changes in glutamate level in rat brain. PLoS One 9:e103154

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haris M, Cai K, Singh A et al (2011) In vivo mapping of brain myo-inositol. Neuroimage 54:2079–2085

    Article  CAS  PubMed  Google Scholar 

  27. Haris M, Singh A, Cai K et al (2013) MICEST: a potential tool for non-invasive detection of molecular changes in Alzheimer’s disease. J Neurosci Methods 12:87–93

    Article  Google Scholar 

  28. Cai K, Singh A, Poptani H et al (2015) CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR Biomed 28:1–8

    CAS  PubMed  Google Scholar 

  29. Haris M, Singh A, Cai K et al (2014) A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med 20:209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kogan F, Haris M, Singh A et al (2014) Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med 71:164–172

    Article  PubMed  Google Scholar 

  31. Kogan F, Haris M, Debrosse C et al (2014) In vivo chemical exchange saturation transfer imaging of creatine (CrCEST) in skeletal muscle at 3T. J Magn Reson Imaging 40:596–602

    Article  PubMed  Google Scholar 

  32. Kuszewski JJ, Thottungal RA, Clore GM et al (2008) Automated error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments: improved robustness and performance of the PASD algorithm. J Biomol NMR 41:221–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stadlbauer A, Gruber S, Nimsky C et al (2006) Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238:958–969

    Article  PubMed  Google Scholar 

  34. Belitzer V, Tsybakova E (1939) About mechanism of phosphorylation, respiratory coupling. Biochimie 4:516–533

    Google Scholar 

  35. Gill SS, Thomas DG, Van Bruggen N et al (1990) Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr 14:497–504

    Article  CAS  PubMed  Google Scholar 

  36. Fenstermacher MJ, Narayana PA (1990) Serial proton magnetic resonance spectroscopy of ischemic brain injury in humans. Invest Radiol 25:1034–1039

    Article  CAS  PubMed  Google Scholar 

  37. Usenius JP, Vainio P, Hernesniemi J et al (1994) Choline-containing compounds in human astrocytomas studied by 1H NMR spectroscopy in vivo and in vitro. J Neurochem 63:1538–1543

    Article  CAS  PubMed  Google Scholar 

  38. Chang L, McBride D, Miller BL et al (1995) Localized in vivo 1H magnetic resonance spectroscopy and in vitro analyses of heterogeneous brain tumors. J Neuroimaging 5:157–163

    Article  CAS  PubMed  Google Scholar 

  39. Peeling J, Sutherland G (1992) High-resolution 1H NMR spectroscopy studies of extracts of human cerebral neoplasms. Magn Reson Med 24:123–136

    Article  CAS  PubMed  Google Scholar 

  40. Doblas S, He T, Saunders D et al (2010) Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. J Magn Reson Imaging 32:267–275

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vonarbourg A, Sapin A, Lemaire L et al (2004) Characterization and detection of experimental rat gliomas using magnetic resonance imaging. MAGMA 17:133–139

    Article  CAS  PubMed  Google Scholar 

  42. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neuro-Oncol 94:299–312

    Article  Google Scholar 

  43. Recinos VR, Tyler BM, Bekelis K et al (2010) Combination of intracranial temozolomide with intracranial carmustine improves survival when compared with either treatment alone in a rodent glioma model. Neurosurgery 66:530–537, discussion 537

    Article  PubMed  Google Scholar 

  44. Kim S, Pickup S, Hsu O et al (2008) Diffusion tensor MRI in rat models of invasive and well-demarcated brain tumors. NMR Biomed 21:208–216

    Article  PubMed  Google Scholar 

  45. Tkac I, Starcuk Z, Choi IY et al (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656

    Article  CAS  PubMed  Google Scholar 

  46. O’Gorman RL, Michels L, Edden RA et al (2011) In vivo detection of GABA and glutamate with MEGA-PRESS: reproducibility and gender effects. J Magn Reson Imaging 33:1262–1267

    Article  PubMed  PubMed Central  Google Scholar 

  47. Naressi A, Couturier C, Castang I et al (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286

    Article  CAS  PubMed  Google Scholar 

  48. Naressi A, Couturier C, Devos JM et al (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12:141–152

    Article  CAS  PubMed  Google Scholar 

  49. Ramani A, Dalton C, Miller DH et al (2002) Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 20:721–731

    Article  CAS  PubMed  Google Scholar 

  50. Jin T, Wang P, Zong X et al (2013) MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T. Magn Reson Imaging 69:760–770

    CAS  Google Scholar 

  51. Zhou J (2011) Amide proton transfer imaging of the human brain. Methods Mol Biol 711:227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh A, Cai K, Haris M et al (2013) On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 69:818–824

    Article  CAS  PubMed  Google Scholar 

  53. Cai K, Xu HN, Singh A et al (2014) Breast cancer redox heterogeneity detectable with chemical exchange saturation transfer (CEST) MRI. Mol Imaging Biol 16:670–679

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cai K, Xu HN, Singh A et al (2013) Characterizing prostate tumor mouse xenografts with CEST and MT-MRI and redox scanning. Adv Exp Med Biol 765:39–45

    Article  CAS  PubMed  Google Scholar 

  55. Walker EA, Fenton ME, Salesky JS et al (2011) Magnetic resonance imaging of benign soft tissue neoplasms in adults. Radiol Clin N Am 49(1197–1217):vi

    Google Scholar 

  56. Zaiss M, Xu J, Goerke S et al (2014) Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI—application to pH-weighted MRI of acute stroke. NMR Biomed 27:240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patra S, Ghosh A, Roy SS et al (2012) A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids 42:2319–2330

    Article  CAS  PubMed  Google Scholar 

  58. Pretlow TG, Whitehurst GB, Pretlow TP et al (1982) Decrease in creatine kinase in human prostatic carcinoma compared to benign prostatic hyperplasia. Cancer Res 42:4842–4848

    PubMed  Google Scholar 

  59. Joseph J, Cardesa A, Carreras J (1997) Creatine kinase activity and isoenzymes in lung, colon and liver carcinomas. Br J Cancer 76:600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsung SH (1983) Creatine kinase activity and isoenzyme pattern in various normal tissues and neoplasms. Clin Chem 29:2040–2043

    CAS  PubMed  Google Scholar 

  61. Onda T, Uzawa K, Endo Y et al (2006) Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma. Br J Cancer 94:698–709

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Patra S, Bera S, SinhaRoy S et al (2008) Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS J 275:3236–3247

    Article  CAS  PubMed  Google Scholar 

  63. Fukuda J, Yagishita S, Yamaoka K et al (1994) Creatine kinase isoenzyme BB increased in serum and tumor tissue of patients with giant cell tumor of bone. Clin Chem 40:2064–2065

    CAS  PubMed  Google Scholar 

  64. Meffert G, Gellerich FN, Margreiter R et al (2005) Elevated creatine kinase activity in primary hepatocellular carcinoma. Boston Med Ctr Gastroenterol 5:9

    Google Scholar 

  65. Tain RLW, Yang S, Zhou XJ et al (2015) Separated quantification of creatine and phosphocreatine based on a novel proton MR method combing 1H-MRS and CEST MRI. Process Intl Soc Magn Reson Med 23:3352

    Google Scholar 

  66. Mori S, Eleff SM, Pilatus U et al (1998) Proton NMR spectroscopy of solvent-saturable resonances: a new approach to study pH effects in situ. Magn Reson Med 40:36–42

    Article  CAS  PubMed  Google Scholar 

  67. Jin T, Wang P, Zong X et al (2012) Magnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast. Neuroimage 59:1218–1227

    Article  CAS  PubMed  Google Scholar 

  68. Desmond KL, Moosvi F, Stanisz GJ (2014) Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T. Magn Reson Med 71:1841–1853

    Article  PubMed  Google Scholar 

  69. Sun PZ, Benner T, Kumar A et al (2008) Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 60:834–841

    Article  PubMed  Google Scholar 

  70. Arus C, Barany M, Westler WM et al (1984) 1H NMR of intact muscle at 11 T. FEBS Lett 165:231–237

    Article  CAS  PubMed  Google Scholar 

  71. Middleton DA, Hockings PD, Glen S et al (1995) Image directed proton spectroscopy of gerbil brain at 7 tesla. NMR Biomed 8:118–126

    Article  CAS  PubMed  Google Scholar 

  72. Wu LM, Zhou B, Lu Q et al (2016) T2* relaxation time in the detection and assessment of aggressiveness of peripheral zone cancer in comparison with diffusion-weighted imaging. Clin Radiol 71:356–362

    Article  PubMed  Google Scholar 

  73. Simpkin CJ, Morgan VA, Giles SL et al (2013) Relationship between T2 relaxation and apparent diffusion coefficient in malignant and non-malignant prostate regions and the effect of peripheral zone fractional volume. Br J Radiol 86:20120469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Just M, Thelen M (1988) Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors. Radiology 169:779–785

    Article  CAS  PubMed  Google Scholar 

  75. Felix R, Schorner W, Laniado M et al (1985) Brain tumors: MR imaging with gadolinium-DTPA. Radiology 156:681–688

    Article  CAS  PubMed  Google Scholar 

  76. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    Article  CAS  PubMed  Google Scholar 

  77. Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179:783–789

    Article  Google Scholar 

  78. Arnold DL, Shoubridge EA, Villemure JG et al (1990) Proton and phosphorus magnetic resonance spectroscopy of human astrocytomas in vivo. Preliminary observations on tumor grading. NMR Biomed 3:184–189

    Article  CAS  PubMed  Google Scholar 

  79. Bruhn H, Frahm J, Gyngell ML et al (1989) Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172:541–548

    Article  CAS  PubMed  Google Scholar 

  80. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the discussions with Drs. Mohammad Haris and Anup Singh from the Center for MR and Optical Imaging at University of Pennsylvania. Our sincere thanks are also due to Drs. Weixia Liu and Stephen Pickup for their imaging assistance as well as Ranjit Ittyerah and Dr. Damodar Reddy for their help with the animal model. This work was partially supported by the National Center for Research Resources and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health through grant number P41 EB015893 and the Department of Radiology and the Center for Magnetic Resonance Research at University of Illinois at Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejia Cai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Tain, RW., Zhou, X.J. et al. Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness. Mol Imaging Biol 19, 225–232 (2017). https://doi.org/10.1007/s11307-016-0995-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0995-0

Key words

Navigation