Skip to main content

Advertisement

Log in

PET Imaging Study of S1PR1 Expression in a Rat Model of Multiple Sclerosis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Upregulation of sphingosine-1-phosphate receptor 1 (S1PR1) expression in multiple sclerosis (MS) lesions is associated with neuroinflammatory response. This study investigated the correlation between neuroinflammation and S1PR1 expression in the spinal cord of an experimental autoimmune encephalomyelitis (EAE) rat model of MS, using the S1PR1 positron emission tomography (PET) radiotracer [11C]TZ3321.

Procedures

MicroPET imaging studies of [11C]TZ3321 were performed to measure uptake of [11C]TZ3321 in the spinal cord of EAE rats. Immunohistochemical staining was performed to confirm the overexpression of S1PR1 and other inflammatory biomarkers.

Results

MicroPET imaging demonstrated a 20–30 % increase in [11C]TZ3321 uptake in the lumbar spinal cord of EAE rats versus sham controls at 35–60 min post injection. The increased uptake of [11C]TZ3321 was correlated with the overexpression of S1PR1 in the lumbar spinal cord of EAE rats that was confirmed by immunohistochemical staining. Upregulated S1PR1 expression was associated with glial cell activation and immune cell infiltration.

Conclusions

MicroPET imaging modality with a specific radioligand [11C]TZ3321 is able to assess the expression of S1PR1 in EAE rat lumbar spinal cord. This may provide a new approach to the assessment of neuroinflammatory response in MS and other inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3D-OSEM:

Three-dimensional ordered subset expectation maximization

BDNF:

Brain-derived neurotrophic factor

CCL2:

Chemokine (C-C motif) ligand 2

CFA:

Complete Freund’s adjuvant

CNS:

Central nervous system

DAB:

3,3-Diaminobenzidine

EAE:

Experimental autoimmune encephalomyelitis

GDNF:

Glial cell-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

HPLC:

High-performance liquid chromatography

HRP:

Horseradish peroxidase

Iba-1:

Ionized calcium-binding adapter molecule 1

IL:

Interleukin

MBP:

Myelin basic protein

MS:

Multiple sclerosis

PBS:

Phosphate-buffered saline

PET:

Positron emission tomography

S1PR1:

Sphingosine-1-phosphate receptor 1

SUV:

Standardized uptake value

TAC:

Time–activity curve

TNF-α:

Tumor necrosis factor-α

TSPO:

Translocator protein 18 kDa

References

  1. Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14:183–193

    Article  CAS  PubMed  Google Scholar 

  2. Ransohoff RM, Hafler DA, Lucchinetti CF (2015) Multiple sclerosis—a quiet revolution. Nat Rev Neurol 11:134–142

    Article  PubMed  PubMed Central  Google Scholar 

  3. Compston A, Confavreux C, Lassmann H et al (2006) McAlpine’s multiple sclerosis, 4th edn. Elsevier/Churchill Livingstone, Philadelphia

    Google Scholar 

  4. Marsolais D, Rosen H (2009) Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules. Nat Rev Drug Discov 8:297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kappos L, Radue EW, O’Connor P et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401

    Article  CAS  PubMed  Google Scholar 

  6. Pelletier D, Hafler DA (2012) Fingolimod for multiple sclerosis. N Engl J Med 366:339–347

    Article  CAS  Google Scholar 

  7. Choi JW, Gardell SE, Herr DR et al (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci U S A 108:751–756

    Article  CAS  PubMed  Google Scholar 

  8. Galicia-Rosas G, Pikor N, Schwartz JA et al (2012) A sphingosine-1-phosphate receptor 1-directed agonist reduces central nervous system inflammation in a plasmacytoid dendritic cell-dependent manner. J Immunol 189:3700–3706

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez-Cabrera PJ, Cahalan SM, Nguyen N et al (2012) S1P1 receptor modulation with cyclical recovery from lymphopenia ameliorates mouse model of multiple sclerosis. Mol Pharmacol 81:166–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Doorn R, Van Horssen J, Verzijl D et al (2010) Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia 58:1465–1476

    PubMed  Google Scholar 

  11. Garris CS, Wu L, Acharya S et al (2013) Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat Immunol 14:1166–1172

    Article  CAS  PubMed  Google Scholar 

  12. Noda H, Takeuchi H, Mizuno T, Suzumura A (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol 256:13–18

    Article  CAS  PubMed  Google Scholar 

  13. Samoilova EB, Horton JL, Hilliard B et al (1998) IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol 161:6480–6486

    CAS  PubMed  Google Scholar 

  14. Izikson L, Klein RS, Charo IF et al (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 192:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiba K, Kataoka H, Seki N et al (2011) Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-beta in mouse experimental autoimmune encephalomyelitis. Int Immunopharmacol 11:366–372

    Article  CAS  PubMed  Google Scholar 

  16. Maeda Y, Seki N, Kataoka H et al (2015) IL-17-producing Vγ4+ γδ T cells require sphingosine 1-phosphate receptor 1 for their egress from the lymph nodes under homeostatic and inflammatory conditions. J Immunol 195:1408–1416

    Article  CAS  Google Scholar 

  17. Seki N, Maeda Y, Kataoka H et al (2013) Role of sphingosine 1-phosphate (S1P) receptor 1 in experimental autoimmune encephalomyelitis—I. S1P-S1P1 axis induces migration of Th1 and Th17 cells. Pharmacol Pharm 4:628–637

    Article  CAS  Google Scholar 

  18. Briard E, Orain D, Beerli C et al (2011) BZM055, an iodinated radiotracer candidate for PET and SPECT imaging of myelin and FTY720 brain distribution. Chemmedchem 6:667–677

    Article  CAS  PubMed  Google Scholar 

  19. Prasad VP, Wagner S, Keul P et al (2014) Synthesis of fluorinated analogues of sphingosine-1-phosphate antagonists as potential radiotracers for molecular imaging using positron emission tomography. Bioorg Med Chem 22:5168–5181

    Article  CAS  PubMed  Google Scholar 

  20. Shaikh RS, Schilson SS, Wagner S et al (2015) Synthesis and evaluation of fluorinated Fingolimod (FTY720) analogues for sphingosine-1-phosphate receptor molecular imaging by positron emission tomography. J Med Chem 58:3471–3484

    Article  CAS  PubMed  Google Scholar 

  21. Jin H, Yang H, Liu H et al (2016) A promising carbon-11 labeled sphingosine-1-phosphate receptor 1 specific PET tracer for imaging vascular injury. J Nucl Cardiol. doi:10.1007/s12350-015-0391-1

    Google Scholar 

  22. Abourbeh G, Theze B, Maroy R et al (2012) Imaging microglial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by positron emission tomography using the mitochondrial 18 kDa translocator protein radioligand [18F]DPA-714. J Neurosci 32:5728–5736

    Article  CAS  PubMed  Google Scholar 

  23. Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  PubMed  Google Scholar 

  24. Logan J, Fowler JS, Volkow ND et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    Article  CAS  PubMed  Google Scholar 

  25. Logan J, Fowler JS, Volkow ND et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    Article  CAS  PubMed  Google Scholar 

  26. Meeson AP, Piddlesden S, Morgan BP, Reynolds R (1994) The distribution of inflammatory demyelinated lesions in the central nervous system of rats with antibody-augmented demyelinating experimental allergic encephalomyelitis. Exp Neurol 129:299–310

    Article  CAS  PubMed  Google Scholar 

  27. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mattner F, Katsifis A, Staykova M et al (2005) Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis. Eur J Nucl Med Mol Imaging 32:557–563

    Article  CAS  PubMed  Google Scholar 

  29. Linker RA, Lee DH (2009) Models of autoimmune demyelination in the central nervous system: on the way to translational medicine. Exp Transl Stroke Med 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kunkel GT, MacEyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12:688–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brinkmann V, Billich A, Baumruker T et al (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897

    Article  CAS  PubMed  Google Scholar 

  32. Chun J, Hartung HP (2010) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33:91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seki N, Kataoka H, Sugahara K et al (2013) Role of sphingosine 1-phosphate (S1P) receptor 1 in experimental autoimmune encephalomyelitis—II. S1P-S1P1 axis induces pro-inflammatory cytokine production in astrocytes. Pharmacol Pharm 4:638–646

    Article  CAS  Google Scholar 

  35. Mehling M, Lindberg R, Raulf F et al (2010) Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 75:403–410

    Article  CAS  PubMed  Google Scholar 

  36. Kebir H, Kreymborg K, Ifergan I et al (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  CAS  PubMed  Google Scholar 

  37. Matusevicius D, Kivisakk P, He B et al (1999) Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5:101–104

    Article  CAS  PubMed  Google Scholar 

  38. de Paula FD, Vlaming ML, Copray SC et al (2014) PET imaging of disease progression and treatment effects in the experimental autoimmune encephalomyelitis rat model. J Nucl Med 55:1330–1335

    Article  Google Scholar 

  39. Colasanti A, Piccini P (2014) PET imaging in multiple sclerosis: focus on the translocator protein. PET and SPECT in neurology. Springer, Berlin Heidelberg, pp 757–773

    Google Scholar 

  40. Owen DR, Yeo AJ, Gunn RN et al (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32:1–5

    Article  CAS  PubMed  Google Scholar 

  41. Kreisl WC, Fujita M, Fujimura Y et al (2010) Comparison of [C-11]-(R)-PK 11195 and [C-11]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage 49:2924–2932

    Article  CAS  PubMed  Google Scholar 

  42. Owen DR, Gunn RN, Rabiner EA et al (2011) Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 52:24–32

    Article  CAS  PubMed  Google Scholar 

  43. Kreisl WC, Jenko KJ, Hines CS et al (2013) A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 33:53–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DOE-Training in Techniques and Translation: Novel Nuclear Medicine Imaging Agents for Oncology and Neurology, DESC0008432, the Washington University School of Medicine Mallinckrodt Institute of Radiology (MIR) Cyclotron Facility Allotment #14-017, and NIH/NINDS, NS075527, and NIH/NIMH, MH092797. We thank Nicole Fettig, Margaret Morris, Amanda Roth, Lori Strong, and Ann Stroncek for their assistance with the microPET imaging studies, Marlene Scott and Bill Coleman in the Elvie L. Taylor Histology Core Facility of Washington University School of Medicine for sample embedding and H&E staining. The authors also like to thank Lynne A. Jones’ assistance in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhude Tu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Jin, H., Yue, X. et al. PET Imaging Study of S1PR1 Expression in a Rat Model of Multiple Sclerosis. Mol Imaging Biol 18, 724–732 (2016). https://doi.org/10.1007/s11307-016-0944-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0944-y

Key words

Navigation