Skip to main content
Log in

Dose-Dependent Uptake of 3′-deoxy-3′-[18 F]Fluorothymidine by the Bowel after Total-Body Irradiation

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to non-invasively assess early, irradiation-induced normal tissue alterations via metabolic imaging with 3′-deoxy-3′-[18 F]fluorothymidine ([18 F]FLT).

Procedures

Twenty-nine male C57BL/6 mice were investigated by [18 F]FLT positron emission tomography for 7 days after total body irradiation (1, 4, and 8 Gy) versus ‘sham’ irradiation (0 Gy). Target/background ratios were determined. The imaging results were validated by histology and immunohistochemistry (Thymidine kinase 1, Ki-67).

Results

[18 F]FLT demonstrated a dose-dependent intestinal accumulation post irradiation. Mean target/background ratio (±standard error) 0 Gy: 1.4 (0.2), 1 Gy: 1.7 (0.1), 4 Gy: 3.1 (0.3), 8 Gy: 4.2 (0.6). Receiver operating characteristic analysis (area under the curve, p value): 0 vs. 1 Gy: 0.81, 0.049; 0 vs. 4 Gy: 1.0, 0.0016; and 0 vs. 8 Gy: 1.0, 0.0020. Immunohistochemistry confirmed the results.

Conclusions

[18 F]FLT seems to provide dose-dependent information on radiation-induced proliferation in the bowel. This opens the perspective for monitoring therapy-related side-effects as well as assessing, e.g., radiation accident victims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Robbins ME, Brunso-Bechtold JK, Peiffer AM et al (2012) Imaging radiation-induced normal tissue injury. Radiat Res 177:449–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology. Nat Rev Cancer 6:702–713

    Article  CAS  PubMed  Google Scholar 

  3. Moran JM, Elshaikh MA, Lawrence TS (2005) Radiotherapy: what can be achieved by technical improvements in dose delivery? Lancet Oncol 6:51–58

    Article  PubMed  Google Scholar 

  4. Aarntzen EH, Srinivas M, Walczak P et al (2012) In vivo tracking techniques for cellular regeneration, replacement, and redirection. J Nucl Med Off Publ Soc Nucl Med 53:1825–1828

    CAS  Google Scholar 

  5. Lawrence YR, Werner-Wasik M, Dicker AP (2008) Biologically conformal treatment: Biomarkers and functional imaging in radiation oncology. Future Oncol 4:689–704

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sharma N, Neumann D, Macklis R (2008) The impact of functional imaging on radiation medicine. Radiat Oncol 3:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dorr W (1997) Three A's of repopulation during fractionated irradiation of squamous epithelia: Asymmetry loss, Acceleration of stem-cell divisions and Abortive divisions. Int J Radiat Biol 72:635–643

    Article  CAS  PubMed  Google Scholar 

  8. Dubois A, Walker RI (1988) Prospects for management of gastrointestinal injury associated with the acute radiation syndrome. Gastroenterology 95:500–507

    CAS  PubMed  Google Scholar 

  9. Kelly P, Das P, Pinnix CC et al (2013) Duodenal toxicity after fractionated chemoradiation for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 85:e143–e149

    Article  PubMed  Google Scholar 

  10. MacVittie TJ, Bennett A, Booth C et al (2012) The prolonged gastrointestinal syndrome in rhesus macaques: the relationship between gastrointestinal, hematopoietic, and delayed multi-organ sequelae following acute, potentially lethal, partial-body irradiation. Health Phys 103:427–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gandara RM, Mahida YR, Potten CS (2012) Regional differences in stem and transit cell proliferation and apoptosis in the terminal ileum and colon of mice after 12 Gy. Int J Radiat Oncol Biol Phys 82:e521–e528

    Article  PubMed  Google Scholar 

  12. Dorr W, Obeyesekere MN (2001) A mathematical model for cell density and proliferation in squamous epithelium after single-dose irradiation. Int J Radiat Biol 77:497–505

    Article  CAS  PubMed  Google Scholar 

  13. Rominger A, Mille E, Zhang S et al (2010) Validation of the octamouse for simultaneous 18F-fallypride small-animal PET recordings from 8 mice. J Nucl Med Off Publ Soc Nucl Med 51:1576–1583

    Google Scholar 

  14. Kemp BJ, Hruska CB, McFarland AR et al (2009) NEMA NU 2–2007 performance measurements of the Siemens Inveon preclinical small animal PET system. Phys Med Biol 54:2359–2376

    Article  PubMed Central  PubMed  Google Scholar 

  15. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  16. Lang C, Lehner S, Todica A et al (2013) Positron emission tomography based in-vivo imaging of early phase stem cell retention after intramyocardial delivery in the mouse model. Eur J Nucl Med Mol Imaging 40:1730–1738

  17. Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol 52:577–587

    Article  PubMed Central  PubMed  Google Scholar 

  18. Feinendegen LE, Muhlensiepen H, Lindberg C et al (1984) Acute and temporary inhibition of thymidine kinase in mouse bone marrow cells after low-dose exposure. Int J Radiat Biol Relat Stud Phys Chem Med 45:205–215

    Article  CAS  PubMed  Google Scholar 

  19. He Q, Skog S, Welander I, Tribukait B (2002) X-irradiation effects on thymidine kinase (TK): I. TK1 and 2 in normal and malignant cells. Cell Prolif 35:69–81

    Article  CAS  PubMed  Google Scholar 

  20. McKinley ET, Ayers GD, Smith RA et al (2013) Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One 8:e58938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mason KA, Withers HR, Davis CA (1989) Dose dependent latency of fatal gastrointestinal and bone marrow syndromes. Int J Radiat Biol 55:1–5

    Article  CAS  PubMed  Google Scholar 

  22. Paproski RJ, Wuest M, Jans HS et al (2010) Biodistribution and uptake of 3'-deoxy-3'-fluorothymidine in ENT1-knockout mice and in an ENT1-knockdown tumor model. J Nucl Med Off Publ Soc Nucl Med 51:1447–1455

    CAS  Google Scholar 

  23. Yue J, Chen L, Cabrera AR et al (2010) Measuring tumor cell proliferation with 18F-FLT PET during radiotherapy of esophageal squamous cell carcinoma: a pilot clinical study. J Nucl Med Off Publ Soc Nucl Med 51:528–534

    Google Scholar 

  24. Roberts SA, Hendry JH, Potten CS (2003) Intestinal crypt clonogens: a new interpretation of radiation survival curve shape and clonogenic cell number. Cell Prolif 36:215–231

    Article  CAS  PubMed  Google Scholar 

  25. Altman DG, Lausen B, Sauerbrei W, Schumacher M (1994) Dangers of using "optimal" cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst 86:829–835

    Article  CAS  PubMed  Google Scholar 

  26. Chalkidou A, Landau DB, Odell EW et al (2012) Correlation between Ki-67 immunohistochemistry and 18F-fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer 48:3499–3513

    Article  CAS  PubMed  Google Scholar 

  27. Okamoto R, Watanabe M (2004) Molecular and clinical basis for the regeneration of human gastrointestinal epithelia. J Gastroenterol 39:1–6

    Article  PubMed  Google Scholar 

  28. Dorr W, Herskind C et al (2012) Radiation biology of normal tissues. Scientific progress and perspectives]. Strahlenther Onkol Organ Dtsch Rontgengesellschaft 188(Suppl 3):295–298

    Article  Google Scholar 

  29. Yabroff KR, Lawrence WF, Clauser S et al (2004) Burden of illness in cancer survivors: Findings from a population-based national sample. J Natl Cancer Inst 96:1322–1330

    Article  PubMed  Google Scholar 

  30. Kupelian PA, Reddy CA, Klein EA, Willoughby TR (2001) Short-course intensity-modulated radiotherapy (70 GY at 2.5 GY per fraction) for localized prostate cancer: Preliminary results on late toxicity and quality of life. Int J Radiat Oncol Biol Phys 51:988–993

    Article  CAS  PubMed  Google Scholar 

  31. Litwin MS, Gore JL, Kwan L et al (2007) Quality of life after surgery, external beam irradiation, or brachytherapy for early-stage prostate cancer. Cancer 109:2239–2247

    Article  PubMed  Google Scholar 

  32. Dorr W, Weber-Frisch M (1995) Repopulation response of mouse oral mucosa during unconventional radiotherapy protocols. Radiother Oncol J Eur Soc Ther Radiol Oncol 37:230–236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Heidrun Zankl, Stefan Zothe, Claudia Schlosser, and Andreas Hartenbach for their support and Wolfgang Dörr (Department of Radiation Oncology, Medical University Vienna) for the critical revision of the manuscript.

Funding

This study was funded by the German Ministry of Defense (BMVg) code: M_SAB X_BA002. Sabrina Niedermoser and Andreas Delker report personal fees from this funding.

Conflict of Interest

All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hartenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartenbach, M., Delker, A., Hartenbach, S. et al. Dose-Dependent Uptake of 3′-deoxy-3′-[18 F]Fluorothymidine by the Bowel after Total-Body Irradiation. Mol Imaging Biol 16, 846–853 (2014). https://doi.org/10.1007/s11307-014-0755-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0755-y

Key words

Navigation