Skip to main content
Log in

Metabolic diversity in tuber tissues of native Chiloé potatoes and commercial cultivars of Solanum tuberosum ssp. tuberosum L.

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The native potatoes (Solanum tuberosum ssp. tuberosum L.) cultivated on Chiloé Island in southern Chile have great variability in terms of tuber shape, size, color and flavor. These traits have been preserved throughout generations due to the geographical position of Chiloé, as well as the different uses given by local farmers.

Objectives

The present study aimed to investigate the diversity of metabolites in skin and pulp tissues of eleven native accessions of potatoes from Chile, and evaluate the metabolite associations between tuber tissues.

Methods

For a deeper characterization of these accessions, we performed a comprehensive metabolic study in skin and pulp tissues of tubers, 3 months after harvesting. Specific targeted quantification of metabolites using 96 well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography time-of-flight mass spectrometry were used in this study.

Results

We observed differential levels of antioxidant activity and phenolic compounds between skin and pulp compared to a common commercial cultivar (Desireé). In addition, we uncovered considerable metabolite variability between different tuber tissues and between native potatoes. Network correlation analysis revealed different metabolite associations among tuber tissues that indicate distinct associations between primary metabolite and anthocyanin levels, and antioxidant activity in skin and pulp tissues. Moreover, multivariate analysis lead to the grouping of native and commercial cultivars based on metabolites from both skin and pulp tissues.

Conclusions

As well as providing important information to potato producers and breeding programs on the levels of health relevant phytochemicals and other abundant metabolites such as starch, proteins and amino acids, this study highlights the associations of different metabolites in tuber skins and pulp, indicating the need for distinct strategies for metabolic engineering in these tissues. Furthermore, this study shows that native Chilean potato accessions have great potential as a natural source of phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M. F., & Verardo, V. (2016). Phenolic compounds in the potato and its byproducts: An overview. International Journal of Molecular Sciences, 17, 835.

    Article  Google Scholar 

  • Albishi, T., John, J., Al-Khalifa, A., & Shahidi, F. (2013). Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal of Functional Foods, 5, 590–600.

    Article  CAS  Google Scholar 

  • Al-Weshahy, A., El-Nokety, M., Bakhete, M., & Rao, V. (2013). Effect of storage on antioxidant activity of freeze-dried potato peels. Food Research International, 50, 507–512.

    Article  CAS  Google Scholar 

  • Al-Weshahy, A., & Rao, A. V. (2009). Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Research International, 42, 1062–1066.

    Article  CAS  Google Scholar 

  • Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America, 90, 7915–7922.

    Article  CAS  Google Scholar 

  • Blennow, A., Engelsen, S. B., Nielsen, T. H., Baunsgaard, L., & Mikkelsen, R. (2002). Starch phosphorylation: A new front line in starch research. Trends in Plant Science;7(10), 445–450.

    Article  CAS  Google Scholar 

  • Brown, C. (2005). Antioxidants in potato. American Journal of Potato Research, 82, 163–172.

    Article  CAS  Google Scholar 

  • Camandro, E. L., Erazzú, L. E., Maune, J. F., & Bedogni, M. C. (2012). A genetic approach to the species problem in wild potato. Plant Biology, 14, 543–554.

    Article  Google Scholar 

  • Carreno-Quintero, N., Acharjee, A., Maliepaard, C., Bachem, C. W., Mumm, R., Bouwmeester, H., et al. (2012). Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiology, 158, 306–1318.

    Article  Google Scholar 

  • Chakauya, E., Coxon, K. M., Whitney, H. M., Ashurst, J. L., Abell, C., & Smith, A. G. (2006). Pantothenate biosynthesis in higher plants: Advances and challenges. Physiologia Plantarum, 126, 319–329.

    Article  CAS  Google Scholar 

  • Chandrasekara, A., & Josheph Kumar, T. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. International Journal of Food Science. https://doi.org/10.1155/2016/3631647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinnici, F., Bendini, A., Gaiani, A., & Riponi, C. (2004). Radical scavenging activities of peels and pulps from cv. Golden delicious apples as related to their phenolic composition. Journal of Agricultural and Food Chemistry, 52, 4684–4689.

    Article  CAS  Google Scholar 

  • Chun, O. K., Kim, D. O., Smith, N., Schroeder, D., Han, J. T., & Lee, C. Y. (2005). Daily consumption of phenolics and total antioxidantcapacity from fruit and vegetables in the American diet. Journal ofthe Science of Food and Agriculture, 85, 1715–1724.

    Article  CAS  Google Scholar 

  • Contreras, A., Banse, J., Fuentealba, J., Aruta, C., & Manquian, N. (1981) Germoplasma chileno de papas (Solanum tuberosum L.). Universidad Austral de Chile, Facultad de Ciencias Agrarias, Instituto de Producción Vegetal. Informe final-1980, 33.

  • Cross, J. M., von Korff, M., Altmann, T., Bartzetko, L., Sulpice, R., Gibon, Y., et al. (2006). Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiology, 142, 1574–1588.

    Article  CAS  Google Scholar 

  • Cruz, C. D. (2013). GENES—a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum, Agronomy, 35, 271–276.

    Article  Google Scholar 

  • Dobson, G., Shepherd, T., Verral, S. R., Conner, S., McNicol, J. W., Ramsay, G., et al. (2008). Phytochemical diversity in tubers of potato cultivars and landraces using a GC-MS metabilomics approach. Journal of Agricultural and Food Chemistry, 56, 10280–10291.

    Article  CAS  Google Scholar 

  • Dobson, G., Shepherd, T., Verral, S. R., Griffiths, W. D., Ramsay, G., McNicol, J. W., et al. (2010). A metabolomics study of cultivated potato (Solanum tuberosum) group Andiggena, Phureja, Stenotomum and Tuberosum using gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 58, 1214–1213

    Article  CAS  Google Scholar 

  • Ezekiel, B., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato. A review. Food Research International, 50, 487–496.

    Article  CAS  Google Scholar 

  • Fernie, A. R., Roscher, A., Ratcliffe, G. R., & Kruger, N. J. (2001). Fructose 2,6-bishosphate activates pyrophosphate: Fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta, 212, 250–263.

    Article  CAS  Google Scholar 

  • Hyon, W. I., Bong-Soon, S., Seung-U, L., Nobuyuki, K., Mayumi, O. K., Carol, E. L., et al. (2008). Analysis of phenolic compounds by high performance liquid chromatography/mass spectrometry in potato flowers, leaves, stem and tubers in home-processed potatoes. Journal of Agricultural and Food Chemistry, 56, 3341–3349.

    Article  Google Scholar 

  • Jansen, G., & Flamme, W. (2006). Coloured potatoes (Solanum tuberosum L.) anthocyanin content and tuber quality. Genetic Resources and Crop Evolution, 53, 1321–1331.

    Article  CAS  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638.

    Article  CAS  Google Scholar 

  • Lachman, J., Karel, H., Miloslav, Š, Matyáš, O., Vladimír, P., Alena, H., et al. (2009). Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chemistry, 114, 836–843.

    Article  CAS  Google Scholar 

  • Laerke, P. E., Christiansen, J., & Veierskov, B. (2002). Colour of blackspot bruises in potato tubers during growth and storage compared to their discolouration potential. Postharvest Biology and Technology, 26, 99–111.

    Article  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  CAS  Google Scholar 

  • Lovat, C., Nassar, A. M., Kubow, S., Li, X. Q., & Donnelly, D. (2016). Metabolic biosynthesis of potato (Solanum tuberosum L.) antioxidants and implications for human health. Critical Reviews in Food Science and Nutrition, 56, 2278–2303.

    Article  CAS  Google Scholar 

  • Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiment. Bioinformatics, 24, 732–737.

    Article  CAS  Google Scholar 

  • Lukaszewicz, M., Matysiak-Kata, I., Skala, J., Fecka, I., Cisowski, W., & Szopa, J. (2004). Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. Journal of Agricultural and Food Chemistry, 52, 1526–1533.

    Article  CAS  Google Scholar 

  • Mattila, P., & Hellström, J. (2007). Phenolic acids in potatoes, vegetables, and some of their products. Journal of Food Composition and Analysis, 20, 152–160.

    Article  CAS  Google Scholar 

  • Meekins, D. A., Vander Kooi, C. W., & Gentry, M. S. (2016). Structural mechanisms of plant glucan phosphatases in starch metabolism. The FEBS Journal., 283, 2427–2447.

    Article  CAS  Google Scholar 

  • Meyers, K. J., Watkins, C. B., Pritts, M. P., & Liu, R. H. (2003). Antioxidant and antiproliferative activities of strawberries. Journal of Food Composition and Analysis, 51, 6887–6892.

    CAS  Google Scholar 

  • Nyman, N. A., & Kumpulainen, J. T. (2001). Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography. Journal of Food Composition and Analysis, 49, 4183–4187.

    CAS  Google Scholar 

  • Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69, 3225–3243.

    Article  CAS  Google Scholar 

  • Osorio, S., Do, P. T., & Fernie, A. R. (2012). Profiling primary metabolites of tomato fruit with gas chromatography/mass spectrometry. Methods in Molecular Biology, 860, 101–109.

    Article  CAS  Google Scholar 

  • Payyavula, R. S., Navarre, D. A., Kuhl, J. C., Pantoja, A., & Pillai, S. S. (2012). Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biology, 12, 39.

    Article  CAS  Google Scholar 

  • Reyes, F. L., Miller, J. C. Jr., & Cisneros-Zevallos, L. (2005). Antioxidant capacity, anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum tuberosum L.) genopypes. American Journal of Potato Research, 82, 271–286.

    Article  CAS  Google Scholar 

  • Ribera, A., Reyes-Díaz, M., Alberdi, M., Zuñiga, G., & Mora, M. L. (2010). Antioxidant compounds in skin and pulp of fruits change among genotypes and maturity stages in highbush blueberry (Vaccinium corymbosum L.) grown in Southern Chile. Journal of Soil Science and Plant Nutrition, 10, 509–536.

    Article  Google Scholar 

  • Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., et al. (2003). TM4: A free, open-source system for microarray data management and analysis. BioTechniques, 34, 374.

    Article  CAS  Google Scholar 

  • Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45, 287–306.

    Article  CAS  Google Scholar 

  • Singh, N., & Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85, 611–616.

    Article  CAS  Google Scholar 

  • Singh, N., & Rajini, P. S. (2008). Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chemico-Biological Interactions, 173, 97–104.

    Article  CAS  Google Scholar 

  • Singh, P. P., & Saldana, M. D. A. (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Research International, 44, 35–38.

    Google Scholar 

  • Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 29–55.

    Google Scholar 

  • Solano, J., Mathias, M., Esnault, F., & Brebant, P. (2013). Genetic diversity among native varieties and commercial cultivars of Solanum tuberosum ssp tuberosum L. present in Chile. Electronic Journal of Biotechnology, 16, 6.

    Article  Google Scholar 

  • Sosulski, F., Krygier, K., & Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. Journal of Agricultural and Food Chemistry, 30, 337–340.

    Article  CAS  Google Scholar 

  • Spooner, D. M., McLean, K., Ramsay, G., Waugh, R., & Bryan, G. J. (2005). A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences of the United States of America, 102, 14694–14699.

    Article  CAS  Google Scholar 

  • Steinfath, M., Strehmel, N., Peters, R., Schauer, N., Groth, D., Hummel, J., Steup, M., Selbig, J., Kopka, J., Geigenberger, P., & Van Dongen, J. T. (2010). Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnol Journal, 8, 900–911.

    Article  CAS  Google Scholar 

  • Teow, C. C., Truong, V. D., McFeeters, R. F., Thompson, R. L., Pecota, K. V., & Yencho, G. C. (2007). Antioxidant activities, phenolic and b-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry, 103, 829–838.

    Article  CAS  Google Scholar 

  • Valcarcel, J., Reilly, K., Gaffney, M., & O’Brien, N. M. (2015). Antioxidant activity, total phenolic and total flavonoid content in sixty varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato research, 58, 221–244.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Zhang, Y. (2007). Formation and reduction of acrylamide in maillard reaction: A review based on the current state of knowledge. Critical Reviews in Food Science and Nutrition, 47, 521–542.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [grant number CBB - AUC-00018-16]. Research fellowships were granted by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to ANN and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [Grant Number CBB-BPD- 00019-16] to FMOS. ANN, MRD and CIB also acknowledge the support from the Chilean Ministerio de Educación (MEC-CONICYT; Grant PAI80160036). The authors wish to thank the NUBIOMOL-UFV for providing the facilities for the analysis of this work, and Michael Handford (Universidad de Chile) for language support.

Author information

Authors and Affiliations

Authors

Contributions

CIB, MRD, and ANN conceived and designed the research. FD and CIB performed the experiments. TO, MM and FMdeOS contributed powerful analytical tools. CIB, FMdeOS and MM analyzed data. CIB and ANN wrote the manuscript. MRD, TO, JS and ARF revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Claudio Inostroza-Blancheteau or Adriano Nunes-Nesi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2018_1428_MOESM1_ESM.xlsx

SI Table 1. Antioxidant activity, starch content, total amino acid, total anthocyanin, glucose content, fructose content, sucrose content, total phenol, total flavonoids and total protein in skin and pulp tissues of tubers from 11 native potato (Solanum tuberosum ssp. tuberosum L.) varieties and two commercial cultivars (Desireé and Yagana). Values are mean ± SE (n=5). Values in the same row followed by different letters are statistically different (P < 0.05). FW= fresh weight; DW= dry weight Supplementary material 1 (XLSX 24 KB)

11306_2018_1428_MOESM2_ESM.xlsx

SI Table 2. Relative abundance of primary skin metabolites of 11 native potato (Solanum tuberosum ssp. tuberosum L.) varieties and two commercial cultivars (Desireé and Yagana). Values are mean ± SE (n=5). Values in the same row followed by different letters are statistically different (P < 0.05). Abbreviations: D, Desireé; MGML, Meca de gato morada larga; MA, Michuñe azul; C, Cauchau; G, Guicoña; MN, Michuñe negro; GC, Guadacho colorado; M, Murta; CM, Clavela morada; Y, Yagana; T, Tonta; GB, Guadacho blanco; LV, Lengua de vaca. Supplementary material 2 (XLSX 61 KB)

11306_2018_1428_MOESM3_ESM.xlsx

SI Table 3. Relative abundance of primary pulp metabolites of 11 native potato (Solanum tuberosum ssp. tuberosum L.) varieties and two commercial cultivars (Desireé and Yagana). Values are mean ± SE (n=5). Values in the same row followed by different letters are statistically different (P < 0.05). Abbreviations: D, Desireé; MGML, Meca de gato morada larga; MA, Michuñe azul; C, Cauchau; G, Guicoña; MN, Michuñe negro; GC, Guadacho colorado; M, Murta; CM, Clavela morada; Y, Yagana; T, Tonta; GB, Guadacho blanco; LV, Lengua de vaca. Supplementary material 3 (XLSX 52 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inostroza-Blancheteau, C., de Oliveira Silva, F.M., Durán, F. et al. Metabolic diversity in tuber tissues of native Chiloé potatoes and commercial cultivars of Solanum tuberosum ssp. tuberosum L.. Metabolomics 14, 138 (2018). https://doi.org/10.1007/s11306-018-1428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1428-7

Keywords

Navigation