Skip to main content

Advertisement

Log in

1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Metabolomics allows exploration of novel biomarkers and provides insights on metabolic pathways associated with disease. To date, metabolomics studies on CKD have been largely limited to Caucasian populations and have mostly examined surrogate end points.

Objective

In this study, we evaluated the role of metabolites in predicting a primary outcome defined as dialysis need, doubling of serum creatinine or death in Brazilian macroalbuminuric DKD patients.

Methods

Non-targeted metabolomics was performed on plasma from 56 DKD patients. Technical triplicates were done. Metabolites were identified using Agilent Fiehn GC/MS Metabolomics and NIST libraries (Agilent MassHunter Work-station Quantitative Analysis, version B.06.00). After data cleaning, 186 metabolites were left for analyses.

Results

During a median follow-up time of 2.5 years, the PO occurred in 17 patients (30.3%). In non-parametric testing, 13 metabolites were associated with the PO. In univariate Cox regression, only 1,5-anhydroglucitol (HR 0.10; 95% CI 0.01–0.63, p = .01), norvaline and l-aspartic acid were associated with the PO. After adjustment for baseline renal function, 1,5-anhydroglucitol (HR 0.10; 95% CI 0.02–0.63, p = .01), norvaline (HR 0.01; 95% CI 0.001–0.4, p = .01) and aspartic acid (HR 0.12; 95% CI 0.02–0.64, p = .01) remained significantly and inversely associated with the PO.

Conclusion

Our results show that lower levels of 1,5-anhydroglucitol, norvaline and l-aspartic acid are associated with progression of macroalbuminuric DKD. While norvaline and l-aspartic acid point to interesting metabolic pathways, 1,5-anhydroglucitol is of particular interest since it has been previously shown to be associated with incident CKD. This inverse biomarker of hyperglycemia should be further explored as a new tool in DKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afshinnia, F., Rajendiran, T. M., Soni, T., Byun, J., Wernisch, S., Sas, K. M., et al. (2018). Impaired β-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. Journal of the American Society of Nephrology, 29(1), 295–306.

    PubMed  Google Scholar 

  • Buse, J. B., Freeman, J. L., Edelman, S. V., Jovanovic, L., & McGill, J. B. (2003). Serum 1,5-anhydroglucitol (GlycoMark): A short-term glycemic marker. Diabetes Technology & Therapeutics, 5(3), 355–363.

    Article  CAS  Google Scholar 

  • Chen, H., Cao, G., Chen, D. Q., Wang, M., Vaziri, N. D., Zhang, Z. H., et al. (2016). Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression. Redox Biology, 10, 168–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Chen, L., Liu, D., Chen, D. Q., Vaziri, N. D., Yu, X. Y., et al. (2017). Combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism. Journal of Proteome Research, 16(4), 1566–1578.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Miao, H., Feng, Y. L., Zhao, Y. Y., & Lin, R. C. (2014). Metabolomics in dyslipidemia. Advances in Clinical Chemistry, 66, 101–119.

    Article  CAS  PubMed  Google Scholar 

  • Cisek, K., Krochmal, M., Klein, J., & Mischak, H. (2016). The application of multi-.omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrology Dialysis Transplantation, 31(12), 2003–2011.

    Article  Google Scholar 

  • Dungan, K. M., Buse, J. B., Largay, J., Kelly, M. M., Button, E. A., Kato, S., et al. (2006). 1,5-Anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care, 29(6), 1214–1219.

    Article  CAS  PubMed  Google Scholar 

  • Duranton, F., Lundin, U., Gayrard, N., Mischak, H., Aparicio, M., Mourad, G., et al. (2014). Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clinical Journal of the American Society of Nephrology, 9(1), 37–45.

    Article  CAS  PubMed  Google Scholar 

  • El Assar, M., Angulo, J., Santos-Ruiz, M., Ruiz de Adana, J. C., Pindado, M. L., Sánchez-Ferrer, A., et al. (2016). Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. Journal of Physiology, 594(11), 3045–3060.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Bassossy, H. M., El-Fawal, R., Fahmy, A., & Watson, M. L. (2013). Arginase inhibition alleviates hypertension in the metabolic syndrome. British Journal of Pharmacology, 169(3), 693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiehn, O. (2016). Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology, 114, 30.4.1–30.4.32.

    Article  Google Scholar 

  • Goek, O. N., Döring, A., Gieger, C., Heier, M., Koenig, W., Prehn, C., et al. (2012). Serum metabolite concentrations and decreased GFR in the general population. American Journal of Kidney Diseases, 60(2), 197–206.

    Article  CAS  PubMed  Google Scholar 

  • Goek, O. N., Prehn, C., Sekula, P., Römisch-Margl, W., Döring, A., Gieger, C., et al. (2013). Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrology Dialysis Transplantation, 28(8), 2131–2138.

    Article  CAS  Google Scholar 

  • Hasslacher, C., & Kulozik, F. (2016). Effect of renal function on serum concentration of 1,5-anhydroglucitol in type 2 diabetic patients in chronic kidney disease stages I-III: A comparative study with HbA1c and glycated albumin. Journal of Diabetes, 8(5), 712–719.

    Article  CAS  PubMed  Google Scholar 

  • Hirayama, A., Nakashima, E., Sugimoto, M., Akiyama, S., Sato, W., Maruyama, S., et al. (2012). Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Analytical and Bioanalytical Chemistry, 404(10), 3101–3109.

    Article  CAS  PubMed  Google Scholar 

  • Hocher, B., & Adamski, J. (2017). Metabolomics for clinical use and research in chronic kidney disease. Nature Reviews Nephrology, 13(5), 269–284.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, N., Hara, H., & Hiroi, Y. (2014). 1,5-Anhydro-D-glucitol predicts coronary artery disease prevalence and complexity. Journal of Cardiology, 64(4), 297–301.

    Article  PubMed  Google Scholar 

  • Ikeda, N., Hara, H., & Hiroi, Y. (2015). Ability of 1,5-anhydro-d-glucitol values to predict coronary artery disease in a non-diabetic population. International Heart Journal, 56(6), 587–591.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, N., Ikenaga, H., Carmines, P. K., Aoki, Y., Ogawa, Z., Saruta, T., et al. (2004). High glucose augments arginase activity and nitric oxide production in the renal cortex. Metabolism, 53(7), 868–874.

    Article  CAS  PubMed  Google Scholar 

  • Kameyama, T., & Inoue, H. (2014). Association of reduced levels of serum 1,5-anhydro-d-glucitol with carotid atherosclerosis in patients with type 2 diabetes. Journal of Diabetes and Its Complications, 28(3), 348–352.

    Article  PubMed  Google Scholar 

  • Kim, W. J., Park, C. Y., Lee, K. B., Park, S. E., Rhee, E. J., Lee, W. Y., et al. (2012). Serum 1,5-anhydroglucitol concentrations are a reliable index of glycemic control in type 2 diabetes with mild or moderate renal dysfunction. Diabetes Care, 35(2), 281–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto, M., Yamasaki, Y., Kubota, M., Arai, K., Morishima, T., Kawamori, R., et al. (1995). 1,5-Anhydro-D-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care, 18(8), 1156–1159.

    Article  CAS  PubMed  Google Scholar 

  • Kövamees, O., Shemyakin, A., Checa, A., Wheelock, C. E., Lundberg, J. O., Östenson, C. G., et al. (2016a). Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism 11, jc20162007.

    Google Scholar 

  • Kövamees, O., Shemyakin, A., Eriksson, M., Angelin, B., & Pernow, J. (2016b). Arginase inhibition improves endothelial function in patients with familial hypercholesterolaemia irrespective of their cholesterol levels. Journal of Internal Medicine, 279(5), 477–484.

    Article  PubMed  Google Scholar 

  • Lee, J., Choi, J. Y., Kwon, Y. K., Lee, D., Jung, H. Y., Ryu, H. M., et al. (2016). Hwang GS. Changes in serum metabolites with the stage of chronic kidney disease: Comparison of diabetes and non-diabetes. Clinica Chimica Acta 459, 123–131.

    Article  CAS  Google Scholar 

  • Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F. 3rd, Feldman, H. I., et al. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612. (Erratum in: Ann Intern Med. 2011 Sep 20;155(6):408).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang, M., McEvoy, J. W., Chen, Y., Sharrett, A. R., & Selvin, E. (2016). Association of a biomarker of glucose peaks, 1,5-anhydroglucitol, with subclinical cardiovascular disease. Diabetes Care, 39(10), 1752–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon, G. M., Hwang, S. J., Clish, C. B., Tin, A., Yang, Q., Larson, M. G., et al. (2017). Urinary metabolites along with common and rare genetic variations are associated with incident chronic kidney disease. Kidney International, 91(6), 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  • Mika, A., Wojtowicz, W., Ząbek, A., Młynarz, P., Chmielewski, M., Sledzinski, T., et al. (2018). Application of nuclear magnetic resonance spectroscopy for the detection of metabolic disorders in patients with moderate kidney insufficiency. Journal of Pharmaceutical and Biomedical Analysis, 149, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Ming, X. F., Barandier, C., Viswambharan, H., Kwak, B. R., Mach, F., Mazzolai, L., et al. (2004). Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: Implications for atherosclerotic endothelial dysfunction. Circulation, 110(24), 3708–3714.

    Article  CAS  PubMed  Google Scholar 

  • Ming, X. F., Rajapakse, A. G., Carvas, J. M., Ruffieux, J., & Yang, Z. (2009). Inhibition of S6K1 accounts partially for the anti-inflammatory effects of the arginase inhibitor L-norvaline. BMC Cardiovascular Disorders, 9, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutsaers, H. A., Engelke, U. F., Wilmer, M. J., Wetzels, J. F., Wevers, R. A., van den Heuvel, L. P., et al. (2013). Optimized metabolomic approach to identify uremic solutes in plasma of stage 3–4 chronic kidney disease patients. PLoS ONE, 8(8), e71199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niewczas, M. A., Mathew, A. V., Croall, S., Byun, J., Major, M., Sabisetti, V. S., et al. (2017). Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care, 40(3), 383–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niewczas, M. A., Sirich, T. L., Mathew, A. V., Skupien, J., Mohney, R. P., Warram, J. H., et al. (2014). Uremic solutes and risk of end-stage renal disease in type 2 diabetes: Metabolomic study. Kidney International, 85(5), 1214–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nkuipou-Kenfack, E., Duranton, F., Gayrard, N., Argilés, À, Lundin, U., Weinberger, K. M., et al. (2014). Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease. PLoS ONE, 9(5), e96955.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pokrovskiy, M. V., Korokin, M. V., Tsepeleva, S. A., Pokrovskaya, T. G., Gureev, V. V., Konovalova, E. A., et al. (2011). Arginase inhibitor in the pharmacological correction of endothelial dysfunction. International Journal of Hypertension, 2011, 515047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhee, E. P., Clish, C. B., Ghorbani, A., Larson, M. G., Elmariah, S., McCabe, E., et al. (2013). A combined epidemiologic and metabolomic approach improves CKD prediction. Journal of the American Society of Nephrology, 24(8), 1330–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee, E. P., Clish, C. B., Wenger, J., Roy, J., Elmariah, S., Pierce, K. A., et al. (2016). Metabolomics of chronic kidney disease progression: A case-control analysis in the chronic renal insufficiency cohort study. American Journal of Nephrology, 43(5), 366–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero, M. J., Iddings, J. A., Platt, D. H., Ali, M. I., Cederbaum, S. D., Stepp, D. W., et al. (2012). Diabetes-induced vascular dysfunction involves arginase I. American Journal of Physiology-Heart and Circulatory Physiology, 302(1), H159–H166.

    Article  Google Scholar 

  • Saheki, T., Sato, Y., Takada, S., & Katsunuma, T. (1979). Regulation of urea synthesis in rat liver. Inhibition of urea synthesis by L-norvaline. The Journal of Biochemistry, 86(3), 745–750.

    Article  CAS  PubMed  Google Scholar 

  • Sekula, P., Goek, O. N., Quaye, L., Barrios, C., Levey, A. S., Römisch-Margl, W., et al. (2016). A metabolome-wide association study of kidney function and disease in the general population. Journal of the American Society of Nephrology, 27(4), 1175–1188.

    Article  CAS  PubMed  Google Scholar 

  • Selvin, E., Rawlings, A., Lutsey, P., Maruthur, N., Pankow, J. S., Steffes, M., et al. (2016). Association of 1,5-anhydroglucitol with cardiovascular disease and mortality. Diabetes, 65(1), 201–208.

    CAS  PubMed  Google Scholar 

  • Selvin, E., Rawlings, A. M., Grams, M., Klein, R., Steffes, M., & Coresh, J. (2014). Association of 1,5-anhydroglucitol with diabetes and microvascular conditions. Clinical Chemistry, 60(11), 1409–1418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah, V. O., Townsend, R. R., Feldman, H. I., Pappan, K. L., Kensicki, E., & Vander Jagt, D. L. (2013). Plasma metabolomic profiles in different stages of CKD. Clinical Journal of the American Society of Nephrology, 8(3), 363–370.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, K., Karl, B., Mathew, A. V., Gangoiti, J. A., Wassel, C. L., Saito, R., et al. (2013). Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. Journal of the American Society of Nephrology, 24(11), 1901–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shemyakin, A., Kövamees, O., Rafnsson, A., Böhm, F., Svenarud, P., Settergren, M., et al. (2012). Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation, 126(25), 2943–2950.

    Article  CAS  PubMed  Google Scholar 

  • Tazawa, S., Yamato, T., Fujikura, H., Hiratochi, M., Itoh, F., Tomae, M., et al. (2005). SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sciences, 76(9), 1039–1050. (Erratum in: Life Sci. 2010 Oct 9;87(15–16):514).

    Article  CAS  PubMed  Google Scholar 

  • Titan, S. M., Vieira, J. M. Jr., Dominguez, W. V., Barros, R. T., & Zatz, R. (2011). ACEI and ARB combination therapy in patients with macroalbuminuric diabetic nephropathy and low socioeconomic level: A double-blind randomized clinical trial. Clinical Nephrology, 76(4), 273–283.

    Article  CAS  PubMed  Google Scholar 

  • Toyohara, T., Akiyama, Y., Suzuki, T., Takeuchi, Y., Mishima, E., Tanemoto, M., et al. (2010). Metabolomic profiling of uremic solutes in CKD patients. Hypertension Research, 33(9), 944–952.

    Article  PubMed  Google Scholar 

  • Vaarhorst, A. A., Verhoeven, A., Weller, C. M., Böhringer, S., Göraler, S., Meissner, A., et al. (2014). A metabolomic profile is associated with the risk of incident coronary heart disease. American Heart Journal, 168(1), 45–52.e7.

    Article  CAS  PubMed  Google Scholar 

  • Vaisman, B. L., Andrews, K. L., Khong, S. M., Wood, K. C., Moore, X. L., Fu, Y., et al. (2012). Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice. PLoS ONE, 7(7), e39487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, M., Kokubo, Y., Higashiyama, A., Ono, Y., Miyamoto, Y., & Okamura, T. (2011). Serum 1,5-anhydro-D-glucitol levels predict first-ever cardiovascular disease: An 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis, 216(2), 477–483.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, R. H., & Kim, K. (2011). Metabolomics in the study of kidney diseases. Nature Reviews Nephrology, 8(1), 22–33.

    Article  PubMed  Google Scholar 

  • Yu, B., Zheng, Y., Nettleton, J. A., Alexander, D., Coresh, J., & Boerwinkle, E. (2014). Serum metabolomic profiling and incident CKD among African Americans. Clinical Journal of the American Society of Nephrology, 9(8), 1410–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. Y. (2013). Metabolomics in chronic kidney disease. Clinica Chimica Acta, 422, 59–69.

    Article  CAS  Google Scholar 

  • Zhao, Y. Y., Cheng, X. L., Vaziri, N. D., Liu, S., & Lin, R. C. (2014). UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clinical Biochemistry, 47(15), 16–26.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y. Y., Miao, H., Cheng, X. L., Wei, F.. Lipidomics (2015). Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chemico-Biological Interactions, 240, 220–238.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y. Y., Vaziri, N. D., & Lin, R. C. (2015). Lipidomics: New insight into kidney disease. Advances in Clinical Chemistry, 68, 153–175.

    Article  PubMed  Google Scholar 

  • Zhao, Y. Y., Wu, S. P., Liu, S., Zhang, Y., & Lin, R. C. (2014). Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chemico-Biological Interactions, 220, 181–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

FAPESP, Sao Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesiane Tavares.

Ethics declarations

Conflict of interest

Ravi I. Thadhani is a consultant to Fresenius Medical Care North America. Gesiane Tavares, Gabriela Venturini, Kallyandra Padilha, Roberto Zatz, Alexandre C. Pereira, Eugene P. Rhee, Silvia M. O. Titan declares that they have no conflict of interest.

Ethical approval

The protocol was approved by the local Ethics Committees: the Universitary Hospital Ethics Committee (CEP-HU, Sao Paulo University) and the Ethics Committee for Analysis of Research Projects (CAPPesq, Hospital das Clínicas, Sao Paulo University).

Informed consent

Written informed consent was obtained from all participants and all research was performed in accordance with the 2013 Helsinki Declaration principles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, G., Venturini, G., Padilha, K. et al. 1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics. Metabolomics 14, 39 (2018). https://doi.org/10.1007/s11306-018-1337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1337-9

Keywords

Navigation