Skip to main content
Log in

Fluorescence spectroscopy as a potential metabonomic tool for early detection of colorectal cancer

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2011

Abstract

Fluorescence spectroscopy Excitation Emission Matrix (EEM) measurements were applied on human blood plasma samples from a case control study on colorectal cancer. Samples were collected before large bowel endoscopy and included patients with colorectal cancer or with adenomas, and from individuals with other non malignant findings or no findings (N = 308). The objective of the study was to explore the possibilities for applying fluorescence spectroscopy as a tool for detection of colorectal cancer. Parallel Factor Analysis (PARAFAC) was applied to decompose the fluorescence EEMs into estimates of the underlying fluorophores in the sample. Both the pooled score matrix from PARAFAC, holding the relative concentrations of the derived components, and the raw unfolded spectra were used as basis for discrimination models between cancer and the various controls. Both methods gave test set validated sensitivity and specificity values around 0.75 between cancer and controls, and poor discriminations between the various controls. The PARAFAC solution gave better options for analyzing the chemical mechanisms behind the discrimination, and revealed a blue shift in tryptophan emission in the cancer patients, a result that supports previous findings. The present findings show how fluorescence spectroscopy and chemometrics can help in cancer diagnostics, and with PARAFAC fluorescence spectroscopy can be a potential metabonomic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abugo, O. O., Nair, R., & Lakowicz, J. R. (2000). Fluorescence properties of rhodamine 800 in whole blood and plasma. Analytical Biochemistry, 279, 142–150.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, C. M., & Bro, R. (2003). Practical aspects of PARAFAC modeling of fluorescence excitation-emission data 1. Journal of Chemometrics, 17, 200–215.

    Article  CAS  Google Scholar 

  • Bro, R. (1997). PARAFAC. Tutorial and applications 1. Chemometrics and Intelligent Laboratory Systems, 38, 149–171.

    Article  CAS  Google Scholar 

  • DeRose, P. C., & Resch-Genger, U. (2010). Recommendations for fluorescence instrument qualification: The new ASTM standard guide. Analytical Chemistry, 82, 2129–2133.

    Article  PubMed  CAS  Google Scholar 

  • Flamini, E., Mercatali, L., Nanni, O., Calistri, D., Nunziatini, R., Zoli, W., et al. (2006). Free DNA and carcinoembryonic antigen serum levels: An important combination for diagnosis of colorectal cancer. Clinical Cancer Research, 12, 6985–6988.

    Article  PubMed  CAS  Google Scholar 

  • Hamdan, M. H. (2007). Cancer biomarkers. Hoboken: John Wiley and sons.

    Book  Google Scholar 

  • Harshman, R. A., & DeSarbo, W. S. (1984). An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. In H. G. Law, et al. (Eds.), Research methods for multimode data analysis (pp. 602–642). New York: Praeger.

    Google Scholar 

  • Hubmann, M. R., Leiner, M. J. P., & Schaur, R. J. (1990). Ultraviolet fluorescence of human sera.1. Sources of characteristic differences in the ultraviolet fluorescence-spectra of sera from normal and cancer-bearing humans 1. Clinical Chemistry, 36, 1880–1883.

    PubMed  CAS  Google Scholar 

  • Jackson, J. E. (1991). Operations with group data. Hoboken: John Wiley & Sons, Inc.

    Google Scholar 

  • Jenkinson, F., & Steele, R. J. C. (2010). Colorectal cancer screening—methodology. Surgeon-Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland, 8, 164–171.

    Article  CAS  Google Scholar 

  • Kalaivani, R., Masilamani, V., Sivaji, K., Elangovan, M., Selvaraj, V., Balamurugan, S. G., et al. (2008). Fluorescence spectra of blood components for breast cancer diagnosis. Photomedicine and Laser Surgery, 26, 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. New York: Springer.

    Book  Google Scholar 

  • Lawaetz, A. J., & Stedmon, C. A. (2009). Fluorescence intensity calibration using the Raman scatter peak of water. Applied Spectroscopy, 63, 936–940.

    Article  PubMed  CAS  Google Scholar 

  • Leiner, M. J., Schaur, R. J., Desoye, G., & Wolfbeis, O. S. (1986). Fluorescence topography in biology. III: Characteristic deviations of tryptophan fluorescence in sera of patients with gynecological tumors. Clinical Chemistry, 32, 1974–1978.

    PubMed  CAS  Google Scholar 

  • Leiner, M., Schaur, R. J., Wolfbeis, O. S., & Tillian, H. M. (1983). Fluorescence topography in biology. 2. Visible fluorescence topograms of rat sera and cluster-analysis of fluorescence parameters of sera of Yoshida ascites hepatoma-bearing rats. IRCS Medical Science-Biochemistry, 11, 841–842.

    Google Scholar 

  • Lomholt, A. F., Hoyer-Hansen, G., Nielsen, H. J., & Christensen, I. J. (2009). Intact and cleaved forms of the urokinase receptor enhance discrimination of cancer from non-malignant conditions in patients presenting with symptoms related to colorectal cancer. British Journal of Cancer, 101, 992–997.

    Article  PubMed  CAS  Google Scholar 

  • Madhuri, S., Aruna, P., Summiya Bibi, M. I., Gowri, V. S., Koteeswaran, D., Schaur, R. J., et al. (1997). Ultraviolet fluorescence spectroscopy of blood plasma in the discrimination of cancer from normal. Proceedings of SPIE, 2982, 41–45.

    Article  CAS  Google Scholar 

  • Madhuri, S., Suchitra, S., Aruna, P., Srinivasan, T. G., & Ganesan, S. (1999). Native fluorescence characteristics of blood plasma of normal and liver diseased subjects. Medical Science Research, 27, 635–639.

    Google Scholar 

  • Madhuri, S., Vengadesan, N., Aruna, P., Koteeswaran, D., Venkatesan, P., & Ganesan, S. (2003). Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy. Photochemistry and Photobiology, 78, 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Masilamani, V., Al-Zhrani, K., Al-Salhi, M., Al-Diab, A., & Al-Ageily, M. (2004). Cancer diagnosis by autofluorescence of blood components. Journal of Luminescence, 109, 143–154.

    CAS  Google Scholar 

  • McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48.

    Article  CAS  Google Scholar 

  • Nielsen, H. J., Brunner, N., Frederiksen, C., Lomholt, A. F., King, D., Jorgensen, L. N., et al. (2008). Plasma tissue inhibitor of metalloproteinases-1 (TIMP-1): a novel biological marker in the detection of primary colorectal cancer. Protocol outlines of the Danish-Australian endoscopy study group on colorectal cancer detection. Scandinavian Journal of Gastroenterology, 43, 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Nordström, A., & Lewensohn, R. (2010). Metabolomics: Moving to the Clinic. Journal of Neuroimmune Pharmacology, 5, 4–17.

    Article  PubMed  Google Scholar 

  • Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., & Engelsen, S. B. (2000). Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy, 54, 413–419.

    Article  Google Scholar 

  • Nørgaard, L., Soletormos, G., Harrit, N., Albrechtsen, M., Olsen, O., Nielsen, D., et al. (2007). Fluorescence spectroscopy and chemometrics for classification of breast cancer samples—a feasibility study using extended canonical variates analysis. Journal of Chemometrics, 21, 451–458.

    Article  Google Scholar 

  • Ragazzi, E., Pucciarelli, S., Seraglia, R., Molin, L., Agostini, M., Lise, M., et al. (2006). Multivariate analysis approach to the plasma protein profile of patients with advanced colorectal cancer. Journal of Mass Spectrometry, 41, 1546–1553.

    Article  PubMed  CAS  Google Scholar 

  • The Danish Cancer Society. (2010). http://www.cancer.dk.

  • The Danish National Board of Health. (2010). National screening for tyk- og endetarmskræft. The Danish National Board of Health, 1.

  • Uppal, A., Ghosh, N., Datta, A., & Gupta, P. K. (2005). Fluorimetric estimation of the concentration of NADH from human blood samples 1. Biotechnology and Applied Biochemistry, 41, 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Vivian, J. T., & Callis, P. R. (2001). Mechanisms of tryptophan fluorescence shifts in proteins. Biophysical Journal, 80, 2093–2109.

    Article  PubMed  CAS  Google Scholar 

  • Ward, D. G., Suggett, N., Cheng, Y., Wei, W., Johnson, H., Billingham, L. J., et al. (2006). Identification of serum biomarkers for colon cancer by proteomic analysis. British Journal of Cancer, 94, 1898–1905.

    Article  PubMed  CAS  Google Scholar 

  • Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  • Wolfbeis, O. S., & Leiner, M. (1985). Mapping of the total fluorescence of human-blood serum as a new method for its characterization. Analytica Chimica Acta, 167, 203–215.

    Article  CAS  Google Scholar 

  • Xu, X. R., Meng, J. W., Hou, S. G., Ma, H. P., & Wang, D. S. (1988). The characteristic fluorescence of the serum of cancer-patients. Journal of Luminescence, 40–1, 219–220.

    Article  Google Scholar 

  • Zhang, Xuewu, Li, Lin, Wei, Dong, Yap, Yeeleng, & Chen, Feng. (2007). Moving cancer diagnostics from bench to bedside. Trends in Biotechnology, 25, 166–173.

    Article  PubMed  Google Scholar 

  • Zhao, Z., Xiao, Y., Elson, P., Tan, H., Plummer, S. J., Berk, M., et al. (2007). Plasma Lysophosphatidylcholine Levels: Potential Biomarkers for Colorectal Cancer. Journal of Clinical Oncology, 25, 2696–2701.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The VILLUM FOUNDATION is thanked for funding Anders Juul Lawaetz. Abdelrhani Mourhib is thanked for his laboratory assistance. Knud Nielsen, Randers Hospital, Søren Laurberg, Aarhus Hospital, Jesper Olsen, Glostrup Hospital and Hans B Rahr, Odense Hospital, are acknowledged for their contribution to the original protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Juul Lawaetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawaetz, A.J., Bro, R., Kamstrup-Nielsen, M. et al. Fluorescence spectroscopy as a potential metabonomic tool for early detection of colorectal cancer. Metabolomics 8 (Suppl 1), 111–121 (2012). https://doi.org/10.1007/s11306-011-0310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0310-7

Keywords

Navigation