Skip to main content

Advertisement

Log in

Discrimination of Normal and Esophageal Cancer Plasma Proteomes by MALDI-TOF Mass Spectrometry

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Most patients presenting with symptoms of esophageal cancer (EC) have advanced disease. Even with resection, the cure rate is extremely low due to local recurrence and metastatic disease. Early detection and effective therapeutic intervention are essential to improve survival.

Aims

This study tested the hypothesis that the presence of EC modulates concentrations of specific plasma proteins and peptides, potentially allowing discrimination between EC and controls based on mass spectrometric analysis of the respective plasma proteomes.

Methods

Blood samples from 79 esophageal cancer patients and 40 age-matched normal subjects were processed to plasma, and protein/peptide sub-fractions were isolated using HIC8 or WAX-derivatized superparamagnetic beads. Triplicate matrix-assisted laser desorption time-of-flight mass spectra were acquired for specific plasma fractions from each subject.

Results

HIC8 and WAX-derivatized plasma eluates yielded 79 and 77 candidate features, respectively, and a Random Forest algorithm identified a subset of features whose peak intensities allowed discrimination between cancer patients and controls. Areas under the curve in receiver operating characteristic curves for HIC8 spectra were 0.88 and 0.83 for WAX spectra. The combined feature set discriminated EC from control plasma with 79 % sensitivity and 79 % specificity, with positive and negative test likelihood ratios of >14 and 0.17, respectively.

Conclusions

These data lay the foundation for the development of a clinically useful test for esophageal cancer based on statistical analysis of proteomic spectra of patient plasma samples. This approach will be validated by analysis of larger patient cohorts, development of cancer-specific classifiers, and assessment of racial origin imbalances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dahlberg PS, Ferrin LF, Grindle SM, et al. Gene expression profiles in esophageal adenocarcinoma. Ann Thorac Surg. 2004;77:1008–1015.

    Article  PubMed  Google Scholar 

  2. Chen X, Yang CS. Esophageal adenocarcinoma: a review and perspectives on the mechanisms of carcinogenesis and chemoprevention. Carcinogenesis. 2001;22:1119–1129.

    Article  CAS  PubMed  Google Scholar 

  3. Gammon MD, Schoenberg JB, Ahsan H, et al. Tobacco, alcohol and socioeconomic status and adenocarcinoma of the esophagus and gastric cardia. J Natl Cancer Inst. 1997;89:1277–1284.

    Article  CAS  PubMed  Google Scholar 

  4. Chow WH, Blot WJ, Vaugn TL, et al. Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst. 1998;90:150–155.

    Article  CAS  PubMed  Google Scholar 

  5. Blot WJ, Fraumeni JFJ. Trends in esophageal cancer. Mortality among U.S. blacks and whites. Am J Public Health. 1987;77:296.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Shaheen N, Ransohoff DF. Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: clinical applications. JAMA. 2002;287:1982–1986.

    Article  PubMed  Google Scholar 

  7. Cooper GS, Kou TD, Chak A. Receipt of previous diagnoses and endoscopy and outcome from esophageal adenocarcinoma: a population-based study with temporal trends. Am J Gastroenterol. 2009;104:1356–1362.

    Article  PubMed  Google Scholar 

  8. Shaheen NJ, Crosby MA, Bozymski EM, et al. Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology. 2000;119:333–338.

    Article  CAS  PubMed  Google Scholar 

  9. Falk GW, Rice TW, Goldblum JR, et al. Jumbo biopsy forceps protocol still misses unsuspected cancer in Barrett’s esophagus with high-grade dysplasia. Gastrointest Endosc. 1999;49:170–176.

    Article  CAS  PubMed  Google Scholar 

  10. Cameron AJ, Carpenter HA. Barrett’s esophagus, high-grade dysplasia, and early adenocarcinoma: a pathological study. Am J Gastroenterol. 1997;92:586–591.

    CAS  PubMed  Google Scholar 

  11. Levine DS, Haggitt RC, Blount PL, et al. An endoscopic biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett’s esophagus. Gastroenterology. 1993;105:40–50.

    CAS  PubMed  Google Scholar 

  12. Miros M, Kerlin P, Walker N. Only patients with dysplasia progress to adenocarcinoma in Barrett’s oesophagus. Gut. 1991;32:1441–1446.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Schnell TG, Sontag SJ, Chejfec G, et al. Long-term nonsurgical management of Barrett’s esophagus with high-grade dysplasia. Gastroenterology. 2001;120:1607–1619.

    Article  CAS  PubMed  Google Scholar 

  14. Freedman ND, Abnet CC, Leitzmann MF, et al. A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am J Epidemiol. 2007;165:1424–1433.

    Article  PubMed  Google Scholar 

  15. Brabender J, Marjoram P, Salonga D, et al. A multigene expression panel for the molecular diagnosis of Barrett’s esophagus and Barrett’s adenocarcinoma of the esophagus. Oncogene. 2004;23:4780–4788.

    Article  CAS  PubMed  Google Scholar 

  16. Brabender J, Marjoram P, Lord RV, et al. The molecular signature of normal squamous esophageal epithelium identifies the presence of a field effect and can discriminate between patients with Barrett’s esophagus and patients with Barrett’s-associated adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2005;14:2113–2117.

    Article  CAS  PubMed  Google Scholar 

  17. Mitas M, Almeida JS, Mikhitarian K, et al. Accurate discrimination of Barrett’s esophagus and esophageal adenocarcinoma using a quantitative three-tiered algorithm and multimarker real-time reverse transcription-PCR. Clin Cancer Res. 2005;11:2205–2214.

    Article  CAS  PubMed  Google Scholar 

  18. Metzger R, Schneider PM, Warnecke-Eberz U, et al. Molecular biology of esophageal cancer. Onkologie. 2004;27:200–206.

    Article  CAS  PubMed  Google Scholar 

  19. Ling FC, Baldus SE, Khochfar J, et al. Association of COX-2 expression with corresponding active and chronic inflammatory reactions in Barrett’s metaplasia and progression to cancer. Histopathology. 2007;50:203–209.

    Article  CAS  PubMed  Google Scholar 

  20. Eilers PHC. A perfect smoother. Anal Chem. 2003;75:3631.

    Article  CAS  PubMed  Google Scholar 

  21. Eilers PH. Parametric time warping. Anal Chem. 2004;76:404–411.

    Article  CAS  PubMed  Google Scholar 

  22. Morris JS, Coombes KR, Koomen J, et al. Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics. 2005;21:1764–1775.

    Article  CAS  PubMed  Google Scholar 

  23. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  24. Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics. 2003;19:1636–1643.

    Article  CAS  PubMed  Google Scholar 

  25. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2006.

    Google Scholar 

  26. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.

    Google Scholar 

  27. Dobbin KK, Zhao Y, Simon RM. How large a training set is needed to develop a classifier for microarray data? Clin Cancer Res. 2008;14:108–114.

    Article  CAS  PubMed  Google Scholar 

  28. Munro NP, Cairns DA, Clarke P, et al. Urinary biomarker profiling in transitional cell carcinoma. Int J Cancer. 2006;119:2642–2650.

    Article  CAS  PubMed  Google Scholar 

  29. Evans MJ, Livesey JH, Ellis MJ, et al. Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin Biochem. 2001;34:107–112.

    Article  CAS  PubMed  Google Scholar 

  30. Findeisen P, Sismanidis D, Reidl M, et al. Preanalytical impact of sample handling on proteome profiling experiments with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem. 2005;12:2409–2411.

    Article  Google Scholar 

  31. Omenn GS, States DJ, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5:3226–3245.

    Article  CAS  PubMed  Google Scholar 

  32. Tammen H, Schulte I, Hess R, et al. Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics. 2005;5:3414–3422.

    Article  CAS  PubMed  Google Scholar 

  33. Misek DE, Kuick R, Wang H, et al. A wide range of protein isoforms in serum and plasma uncovered by a quantitative intact protein analysis system. Proteomics. 2005;5:3343–3352.

    Article  CAS  PubMed  Google Scholar 

  34. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 2000;21:1164–1177.

    Article  CAS  PubMed  Google Scholar 

  35. Chapman K. The ProteinChip Biomarker System from Ciphergen Biosystems: a novel proteomics platform for rapid biomarker discovery and validation. Biochem Soc Trans. 2002;30:82–87.

    Article  CAS  PubMed  Google Scholar 

  36. Xiao Z, Adam BL, Cazares LH, et al. Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res. 2001;61:6029–6033.

    CAS  PubMed  Google Scholar 

  37. Shiwa M, Nishimura Y, Wakatabe R, et al. Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem Biophys Res Commun. 2003;309:18–25.

    Article  CAS  PubMed  Google Scholar 

  38. Wellmann A, Wollscheid V, Lu H, et al. Analysis of microdissected prostate tissue with ProteinChip arrays—a way to new insights into carcinogenesis and to diagnostic tools. Int J Mol Med. 2002;9:341–347.

    CAS  PubMed  Google Scholar 

  39. Zheng W, Verlander JW, Lynch IJ, et al. Cellular distribution of the potassium channel KCNQ1 in normal mouse kidney. Am J Physiol Renal Physiol. 2007;292:F456–F466.

    Article  CAS  PubMed  Google Scholar 

  40. Kozak KR, Amneus MW, Pusey SM, et al. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc Natl Acad Sci USA. 2003;100:12343–12348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lewczuk P, Esselmann H, Groemer TW, et al. Amyloid beta peptides in cerebrospinal fluid as profiled with surface enhanced laser desorption/ionization time-of-flight mass spectrometry: evidence of novel biomarkers in Alzheimer’s disease. Biol Psychiatry. 2004;55:524–530.

    Article  CAS  PubMed  Google Scholar 

  42. Li J, White N, Zhang Z, et al. Detection of prostate cancer using serum proteomics pattern in a histologically confirmed population. J Urol. 2004;171:1782–1787.

    Article  CAS  PubMed  Google Scholar 

  43. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359:572–577.

    Article  CAS  PubMed  Google Scholar 

  44. Rogers MA, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res. 2003;63:6971–6983.

    CAS  PubMed  Google Scholar 

  45. Cheng AJ, Chen LC, Chien KY, et al. Oral cancer plasma tumor marker identified with bead-based affinity-fractionated proteomic technology. Clin Chem. 2005;51:2236–2244.

    Article  CAS  PubMed  Google Scholar 

  46. Elssner T, Fahr K, Peters D, et al. Magnetic bead-based sample preparation for clinical proteomic profiling studies. In: 51st Meeting American Society for Mass Spectroscopy, Orlando, FL; 2003.

  47. Villanueva J, Philip J, Entenberg D, et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem. 2004;76:1560–1570.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christine Davis, Clinical Coordinator, Digestive Disease Center, MUSC, for patient enrollment and blood sample acquisition. This research was supported by a Hollings Cancer Center/Medical University of South Carolina Department of Defense grant “Translational Research on Cancer Control and Related Therapy” (Subcontract GC-3319-05-4498CM to A.S.) and an AstraZeneca ISS (IRUSESOM0517 to A.S.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Smolka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwacke, J., Millar, T.P., Hammond, C.E. et al. Discrimination of Normal and Esophageal Cancer Plasma Proteomes by MALDI-TOF Mass Spectrometry. Dig Dis Sci 60, 1645–1654 (2015). https://doi.org/10.1007/s10620-014-3513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3513-8

Keywords

Navigation