Skip to main content
Log in

Activation of P2X4 receptors in midbrain cerebrospinal fluid-contacting nucleus leads to mechanical hyperalgesia in chronic constriction injury rats

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Neuropathic pain is a refractory pain state, and its mechanism is still not clear. Previous studies have shown that the purine receptor P2X4R expressed on hyperactive microglia in the spinal cord is essential for the occurrence and development of neuropathic pain. The cerebrospinal fluid-contacting nucleus (CSF-contacting nucleus) in the midbrain has been found to play an important role in the descending inhibition system of modulation. However, there have been no studies on P2X4R in the CSF-contacting nucleus involved in neuropathic pain. To investigate whether P2X4R is expressed in the CSF-contacting nucleus and whether its expression in the CSF-contacting nucleus is involved in the regulation of neuropathic pain, we used a model of chronic sciatic nerve ligation injury (CCI) to simulate neuropathic pain conditions. Immunohistochemistry experiments were conducted to identify the expression of P2X4R in the CSF-contacting nuclei in CCI rats, and western blot analysis showed a significant increase in P2X4R levels 7 days after modeling. Then, we packaged a P2rx4 gene-targeting shRNA in scAAV9 to knock down the P2X4R level in the CSF-contacting nucleus, and we found that CCI-induced mechanical hyperalgesia was reversed. In conclusion, P2X4R expressed in the CSF-contacting nucleus is involved in the process of neuropathic pain, and downregulating P2X4R protein in the CSF-contacting nucleus can reverse the occurrence and development of hyperalgesia, which could represent a potent therapeutic strategy for neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Aby F, Whitestone S, Landry M, Ulmann L, Fossat P (2018) Inflammatory-induced spinal dorsal horn neurons hyperexcitability is mediated by P2X4 receptors. Pain rep 3:e660. https://doi.org/10.1097/pr9.0000000000000660

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bennett G, Xie Y (1988) A peripheral mononeuropathy in rat that produces disorder of pain sendation like those seen in man. Pain 33:87–107. https://doi.org/10.1016/0304-3959(88)90209-6

    Article  PubMed  Google Scholar 

  3. Bernier LP, Ase AR, Seguela P (2018) P2X receptor channels in chronic pain pathways. Br J Pharmacol 175:2219–2230. https://doi.org/10.1111/bph.13957

    Article  CAS  PubMed  Google Scholar 

  4. Chao CL, Lu XF, Zhang LC (2010) Formalin-induced pain stimulation induced expression of GABA in the distal cerebrospinal fluid contacting neurons. Zhongguo Ying Yong Sheng Li Xue Za Zhi 26:36–38

    CAS  PubMed  Google Scholar 

  5. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63. https://doi.org/10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  6. Dixon W (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301

    Article  CAS  PubMed  Google Scholar 

  7. Fei Y, Wang X, Chen S, Zhou Q, Zhang C, Li Y, Sun L, Zhang L (2016) Role of the RVM in descending pain regulation originating from the cerebrospinal fluid-contacting nucleus. Neurochem Res 41:1651–1661. https://doi.org/10.1007/s11064-016-1880-6

    Article  CAS  PubMed  Google Scholar 

  8. Gilron I, Baron R, Jensen T (2015) Neuropathic pain: principles of diagnosis and treatment. Mayo Clin Proc 90:532–545. https://doi.org/10.1016/j.mayocp.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  9. Gonzales E, Prigent S, Abou-Lovergne A, Boucherie S, Tordjmann T, Jacquemin E, Combettes L (2007) rat hepatocytes express functional P2X receptors. FEBS Lett 581:3260–3266. https://doi.org/10.1016/j.febslet.2007.06.016

    Article  CAS  PubMed  Google Scholar 

  10. Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice AS, Treede RD (2011) A new definition of neuropathic pain. Pain 152:2204–2205. https://doi.org/10.1016/j.pain.2011.06.017

    Article  PubMed  Google Scholar 

  11. Jurga AM, Piotrowska A, Makuch W, Przewlocka B, Mika J (2017) Blockade of P2X4 receptors inhibits neuropathic pain-related behavior by preventing MMP-9 activation and, consequently, pronociceptive interleukin release in a rat model. Front Pharmacol 8:48 https://doi.org/10.3389/fphar.2017.00048

  12. Li L, Cao J, Zhang S, Wang C, Wang J, Song G, Wang H, Zhang L (2014) NCAM signaling mediates the effects of GDNF on chronic morphine-induced neuroadaptations. J Molecular Neurosci : MN 53:580–589. https://doi.org/10.1007/s12031-013-0224-0

    Article  CAS  Google Scholar 

  13. Liu H, Yan WW, Lu XX, Zhang XL, Wei JQ, Wang XY, Wang T, Wu T, Cao J, Shao CJ, Zhou F, Zhang HX, Zhang P, Zang T, Lu XF, Cao JL, Ding HL, Zhang LC (2014) Role of the cerebrospinal fluid-contacting nucleus in the descending inhibition of spinal pain transmission. Exp Neurol 261:475–485. https://doi.org/10.1016/j.expneurol.2014.07.018

    Article  CAS  PubMed  Google Scholar 

  14. Liu PF, Fang HZ, Yang Y, Zhang QQ, Zhou QQ, Chen SS, Zhou F, Zhang LC (2017) Activation of P2X3 receptors in the cerebrospinal fluid-contacting nucleus neurons reduces formalin-induced pain behavior via PAG in a rat model. Neurosci 358:93–102. https://doi.org/10.1016/j.neuroscience.2017.06.036

    Article  CAS  Google Scholar 

  15. Montilla A, Mata GP, Matute C, Domercq M (2020) Contribution of P2X4 receptors to CNS function and pathophysiology. Int J Mol Sci 21:5562. https://doi.org/10.3390/ijms21155562

  16. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  17. Song S, Li Y, Bao C, Li Y, Yin P, Hong J, Li W, Shi Y, Zhang L (2019) Stereotaxic coordinates and morphological characterization of a unique nucleus (CSF-contacting nucleus) in rat. Front Neuroanat 13:47. https://doi.org/10.3389/fnana.2019.00047

    Article  PubMed  PubMed Central  Google Scholar 

  18. Song S, Li Y, Zhai X, Li Y, Bao C, Shan C, Hong J, Cao J, Zhang L (2020) Monosynaptic input mapping of diencephalic projections to the cerebrospinal fluid-contacting nucleus in the rat. Front Neuroanat 14:7. https://doi.org/10.3389/fnana.2020.00007

    Article  PubMed  PubMed Central  Google Scholar 

  19. Song S, Li Y, Zhai X, Li Y, Bao C, Shan C, Hong J, Cao J, Zhang L (2020) Connection input mapping and 3D reconstruction of the brainstem and spinal cord projections to the CSF-contacting nucleus. Front Neural Circuits 14:11. https://doi.org/10.3389/fncir.2020.00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nat 424:778–783. https://doi.org/10.1038/nature01786

    Article  CAS  Google Scholar 

  21. Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K (2009) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5:28. https://doi.org/10.1186/1744-8069-5-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci: Off J Soc Neurosci 28:11263–11268. https://doi.org/10.1523/JNEUROSCI.2308-08.2008

    Article  CAS  Google Scholar 

  23. Vigh-Teichmann I, Vigh B (1983) The system of cerebrospinal fluid-contacting neurons. Arch Histol Jpn 46:427–468. https://doi.org/10.1679/aohc.46.427

    Article  CAS  PubMed  Google Scholar 

  24. Vigh B, Manzano e Silva MJ, Frank CL, Vincze C, Czirok SJ, Szabo A, Lukats A, Szel A (2004) The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol histopathol 19:607–628

    CAS  PubMed  Google Scholar 

  25. Wang C, Wang H, Pang J, Li L, Zhang S, Song G, Li N, Cao J, Zhang L (2014) Glial cell-derived neurotrophic factor attenuates neuropathic pain in a mouse model of chronic constriction injury: possible involvement of E-cadherin/p120ctn signaling. J Mol Neurosci 54:156–163. https://doi.org/10.1007/s12031-014-0266-y

    Article  CAS  PubMed  Google Scholar 

  26. Wang CG, Song SY, Ding YL, Guo SQ, Liu X, Hao S, Li X, Chen N, Zhang Y, Zhang LC (2015) Extracellular signal-regulated kinase 5 in the cerebrospinal fluid-contacting nucleus contributes to neuropathic pain in rats. Pain Physician 18:E1073-1081

    PubMed  Google Scholar 

  27. Wang QP, Nakai Y (1994) The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull 34:575–585. https://doi.org/10.1016/0361-9230(94)90143-0

    Article  CAS  PubMed  Google Scholar 

  28. Wang XY, Yan WW, Zhang XL, Liu H, Zhang LC (2014) ASIC3 in the cerebrospinal fluid-contacting nucleus of brain parenchyma contributes to inflammatory pain in rats. Neurol Res 36:270–275. https://doi.org/10.1179/1743132813Y.0000000297

    Article  CAS  PubMed  Google Scholar 

  29. Lu X, Geng X, Zhang L, Zeng Y, Dong H, Yu H (2009) Substance P expression in the distal cerebrospinal fluid-contacting neurons and spinal trigeminal nucleus in formalin-induced the orofacial inflammatory pain in rats. Brain Res Bull 78:139–144. https://doi.org/10.1016/j.brainresbull.2008.11.011

  30. Xing D, Wu Y, Li G, Song S, Liu Y, Liu H, Wang X, Fei Y, Zhang C, Li Y, Zhang L (2015) Role of cerebrospinal fluid-contacting nucleus in sodium sensing and sodium appetite. Physiol Behav 147:291–299. https://doi.org/10.1016/j.physbeh.2015.04.034

    Article  CAS  PubMed  Google Scholar 

  31. Yang R, Yang J, Li Z, Su R, Zou L, Li L, Xu X, Li G, Liu S, Liang S, Xu C (2022) Pinocembrin inhibits P2X4 receptor-mediated pyroptosis in hippocampus to alleviate the behaviours of chronic pain and depression comorbidity in rats. Mol Neurobiol 59:7119–7133. https://doi.org/10.1007/s12035-022-03023-x

    Article  CAS  PubMed  Google Scholar 

  32. Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, Perez-Samartín A, Pulagam K, Lukowiak M, Capetillo-Zarate E, Llop J, Magnus T, Koch-Nolte F, Rassendren F, Matute C, Domercq M (2018) P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med 10:e8743. https://doi.org/10.15252/emmm.201708743

  33. Zhang C, Li Y, Wang X, Fei Y, Zhang L (2017) Involvement of neurokinin 1 receptor within the cerebrospinal fluidcontacting nucleus in visceral pain. Mol Med Rep 15:4300–4304. https://doi.org/10.3892/mmr.2017.6499

    Article  CAS  PubMed  Google Scholar 

  34. Zhang LC, Zeng YM, Ting J, Cao JP, Wang MS (2003) The distributions and signaling directions of the cerebrospinal fluid contacting neurons in the parenchyma of a rat brain. Brain Res 989:1–8. https://doi.org/10.1016/s0006-8993(03)03123-8

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Hu D, Lin S, Fang X, Ye Z (2022) Contribution of P2X purinergic receptor in cerebral ischemia injury. Brain Res Bull 190:42–49. https://doi.org/10.1016/j.brainresbull.2022.09.009

    Article  CAS  PubMed  Google Scholar 

  36. Zhou F, Wang J, Zhang H, Liu H, Zhao G, Zu C, Lu X, Zhang L (2013) Evaluation of three tracers for labeling distal cerebrospinal fluid-contacting neurons. Neurosci Bull 29:576–580. https://doi.org/10.1007/s12264-013-1332-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou QQ, Chen SS, Zhang QQ, Liu PF, Fang HZ, Yang Y, Zhang LC (2017) Cerebrospinal fluid-contacting nucleus mediates nociception via release of fractalkine. Braz J Med Biol Res 50(9):e6275. https://doi.org/10.1590/1414-431x20176275

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 81603700, 81703898 and 81904283) and Research project of Shanghai Municipal Health Commission (No.20194Y0307).

Author information

Authors and Affiliations

Authors

Contributions

JS, LZ, and WS: conception, supervision, and design of this article. WS, YY, and YZ: experiment and manuscript writing. LYL, GY, WT, and LLL: experiment and data collection. JG and JW: data analysis. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Licai Zhang or Jiangang Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All experiments were approved by the Committee for the Ethical Use of Laboratory Animals at Shanghai University of Traditional Chinese Medicine and conducted in accordance with the guidelines of the International Association for the Study of Pain (IASP).

Conflicts of interest

Wei Song declares that he/she has no conflict of interest.

Yue Yong declares that he/she has no conflict of interest.

Yalan Zhou declares that he/she has no conflict of interest.

Liyue Lu declares that he/she has no conflict of interest.

Guijie Yu declares that he/she has no conflict of interest.

Wei Tang declares that he/she has no conflict of interest.

Jian Wang declares that he/she has no conflict of interest.

Jun Guo declares that he/she has no conflict of interest.

Lili Li declares that he/she has no conflict of interest.

Licai Zhang declares that he/she has no conflict of interest.

Jiangang Song declares that he/she has no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Yong, Y., Zhou, Y. et al. Activation of P2X4 receptors in midbrain cerebrospinal fluid-contacting nucleus leads to mechanical hyperalgesia in chronic constriction injury rats. Purinergic Signalling 19, 481–487 (2023). https://doi.org/10.1007/s11302-022-09911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09911-0

Keywords

Navigation