Skip to main content
Log in

Caffeine has a dual influence on NMDA receptor–mediated glutamatergic transmission at the hippocampus

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30–200 μM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 μM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable

Abbreviations

A1R:

Adenosine A1 receptor

A2AR:

Adenosine A2A receptor

aCSF:

Artificial cerebrospinal fluid

AD:

Alzheimer’s disease

AMPAR:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

AP5:

DL-2-Amino-5-phosphonopentanoic acid

ARs:

Adenosine receptors

CA1 :

Cornu Ammonis 1

Ca2+ :

Calcium ion

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione disodium salt hydrate

CNS :

Central nervous system

DIC:

Day in culture

DIC-IR:

Differential interference contrast-infrared

DPCPX:

8-Cyclopentyl-1,3-dipropylxanthine

EDTA:

Ethylenediaminetetraacetic acid

EPSCs:

Excitatory post-synaptic currents

F340/380:

Ratio from excitation wavelength 340 nm and 380 nm

FBS:

Fetal bovine serum

fEPSP:

Field excitatory post-synaptic potential

GABA:

Gamma-aminobutyric acid

HBSS:

Hank’s balanced salt solution

LTD:

Long-term depression

LTP:

Long-term potentiation

mGluR:

Metabotropic glutamate receptors

NMDA:

N-Methyl-d-aspartate

NMDAR:

N-Methyl-d-aspartate receptor

NMDAR-EPSCs:

N-Methyl-d-aspartate receptor excitatory post-synaptic potential

PDL:

Poly-d-lysine

PPF:

Paired-pulse facilitation

S.E.M.:

Standard error of the mean

References

  1. Meeusen R, Roelands B, Spriet LL (2013) Caffeine, exercise and the brain. Nestle Nutr Inst work Ser 76:1–12. https://doi.org/10.1159/000350223

    Article  Google Scholar 

  2. Cappelletti S, Piacentino D, Sani G, Aromatario M (2015) Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol 13:71–88. /https://doi.org/10.2174/1570159X13666141210215655

  3. Hackett PH (2010) Caffeine at high altitude: java at base cAMP. High alt med biol 11:13–17. https://doi.org/10.1089/ham.2009.1077

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell DC, Hockenberry J, Teplansky R, Hartman TJ (2015) Assessing dietary exposure to caffeine from beverages in the U.S. population using brand-specific versus category-specific caffeine values. Food Chem Toxicol 80:247–252. https://doi.org/10.1016/j.fct.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  5. Poole RL, Braak D, Gould TJ (2016) Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice. Behav brain res 298:69–77. https://doi.org/10.1016/j.bbr.2015.03.045

    Article  CAS  PubMed  Google Scholar 

  6. Wikoff D, Welsh BT, Henderson R et al (2017) Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem Toxicol 109:585–648. https://doi.org/10.1016/j.fct.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  7. Ludden AB, O’Brien EM, Pasch KE (2017) Beliefs, behaviors, and contexts of adolescent caffeine use: a focus group study. Subst use misuse 52:1207–1218. https://doi.org/10.1080/10826084.2017.1302957

    Article  PubMed  Google Scholar 

  8. Nehlig A (2016) Effects of coffee/caffeine on brain health and disease: what should I tell my patients? Pr Neurol 16:89–95. https://doi.org/10.1136/practneurol-2015-001162

    Article  Google Scholar 

  9. Verster JC (2014) Caffeine consumption in children, adolescents and adults. Curr Drug Abus Rev 7:133–134

    Article  CAS  Google Scholar 

  10. Williams M, Jarvis MF (1988) Adenosine antagonists as potential therapeutic agents. Pharmacol Biochem Behav 29:433–441

    Article  CAS  Google Scholar 

  11. Daly JW, Fredholm BB (1998) Caffeine--an atypical drug of dependence. Drug alcohol depend 51:199–206. https://doi.org/10.1016/s0376-8716(98)00077-5

    Article  CAS  PubMed  Google Scholar 

  12. Fredholm BB, Battig K, Holmen J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  13. Ribeiro JA, Sebastiao AM (2010) Caffeine and adenosine. J Alzheimers Dis 20(Suppl 1):S3–S15. https://doi.org/10.3233/JAD-2010-1379

    Article  CAS  PubMed  Google Scholar 

  14. Fredholm BB, Yang J, Wang Y (2017) Low, but not high, dose caffeine is a readily available probe for adenosine actions. Mol asp med 55:20–25. https://doi.org/10.1016/j.mam.2016.11.011

    Article  CAS  Google Scholar 

  15. Dunwiddie TV, Hoffer BJ, Fredholm BB (1981) Alkylxanthines elevate hippocampal excitability - evidence for a role of endogenous adenosine. Naunyn Schmiedebergs arch Pharmacol 316:326–330. https://doi.org/10.1007/BF00501365

    Article  CAS  PubMed  Google Scholar 

  16. Sheth S, Brito R, Mukherjea D et al (2014) Adenosine receptors: expression, function and regulation. Int J Mol Sci 15:2024–2052. https://doi.org/10.3390/ijms15022024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sebastião AM, Ribeiro JA (2009) Adenosine receptors and the central nervous system. Handb Exp Pharmacol 193:471–534

    Article  Google Scholar 

  18. Ribeiro JA, Sebastiao AM, de Mendonca A (2002) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    Article  CAS  Google Scholar 

  19. Fredholm BB, IJ AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  20. Sebastiao AM, Ribeiro JA (1996) Adenosine A2 receptor-mediated excitatory actions on the nervous system. Prog Neurobiol 48:167–189. https://doi.org/10.1016/0301-0082(95)00035-6

    Article  CAS  PubMed  Google Scholar 

  21. Li XX, Nomura T, Aihara H, Nishizaki T (2001) Adenosine enhances glial glutamate efflux via A2a adenosine receptors. Life Sci 68:1343–1350

    Article  CAS  Google Scholar 

  22. Rodrigues RJ, Alfaro TM, Rebola N et al (2005) Co-localization and functional interaction between adenosine a(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 92:433–441. https://doi.org/10.1111/j.1471-4159.2004.02887.x

    Article  CAS  PubMed  Google Scholar 

  23. Rebola N, Canas PM, Oliveira CR, Cunha RA (2005) Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132:893–903. /https://doi.org/10.1016/j.neuroscience.2005.01.014

  24. Mouro FM, Rombo DM, Dias RB, et al (2018) Adenosine A2A receptors facilitate synaptic NMDA currents in CA1 pyramidal neurons. Br J Pharmacol 175:4386–4397. /https://doi.org/10.1111/bph.14497

  25. Arendash GW, Cao C (2010) Caffeine and coffee as therapeutics against Alzheimer’s disease. J Alzheimers dis 20 Suppl 1:S117-26. /https://doi.org/10.3233/JAD-2010-091249

  26. de Mendonca A, Cunha RA (2010) Therapeutic opportunities for caffeine in Alzheimer’s disease and other neurodegenerative disorders. J Alzheimers dis 20 Suppl 1:S1-2. /https://doi.org/10.3233/JAD-2010-01420

  27. Alhaider IA, Aleisa AM, Tran TT, Alzoubi KH, Alkadhi KA (2010) Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity. Sleep 33:437–444

    Article  Google Scholar 

  28. Costenla AR, Cunha RA, de Mendonca A (2010) Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers dis 20(Suppl 1):S25–S34. https://doi.org/10.3233/JAD-2010-091384

    Article  CAS  PubMed  Google Scholar 

  29. Faivre E, Coelho JE, Zornbach K, et al (2018) Beneficial effect of a selective adenosine A2A receptor antagonist in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Front Mol Neurosci 11:235. /https://doi.org/10.3389/fnmol.2018.00235

  30. Lopes JP, Pliassova A, Cunha RA (2019) The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A1 and A2A receptors. Biochem Pharmacol 166:313–321. https://doi.org/10.1016/j.bcp.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  31. Dore K, Stein IS, Brock JA et al (2017) Unconventional NMDA receptor signaling. J Neurosci 37:10800–10807. https://doi.org/10.1523/JNEUROSCI.1825-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vyklicky V, Korinek M, Smejkalova T et al (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63(Suppl 1):S191–S203

    Article  CAS  Google Scholar 

  33. de Mendonca A, Sebastiao AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 6:1097–1100

    Article  Google Scholar 

  34. Deng Q, Terunuma M, Fellin T, et al (2011) Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia 59:1084–1093. /https://doi.org/10.1002/glia.21181

  35. Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134. /https://doi.org/10.1016/j.neuron.2007.11.023

  36. Sarantis K, Tsiamaki E, Kouvaros S, et al (2015) Adenosine a(2) a receptors permit mGluR5-evoked tyrosine phosphorylation of NR2B (Tyr1472) in rat hippocampus: a possible key mechanism in NMDA receptor modulation. J Neurochem 135:714–726. /https://doi.org/10.1111/jnc.13291

  37. Kouvaros S, Papatheodoropoulos C (2016) Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors. Neuroscience 317:47–64. /https://doi.org/10.1016/j.neuroscience.2015.12.059

  38. Tebano MT, Martire A, Rebola N, et al (2005) Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-d-aspartate effects. J Neurochem 95:1188–1200. /https://doi.org/10.1111/j.1471-4159.2005.03455.x

  39. Temido-Ferreira M, Ferreira DG, Batalha VL, et al (2018) Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Mol psychiatry 1–25. /https://doi.org/10.1038/s41380-018-0110-9

  40. Krania P, Dimou E, Bantouna M, et al (2018) Adenosine a 2A receptors are required for glutamate mGluR5- and dopamine D1 receptor-evoked ERK1/2 phosphorylation in rat hippocampus: involvement of NMDA receptor. J Neurochem 145:217–231. /https://doi.org/10.1111/jnc.14268

  41. Sebastiao AM, de Mendonca A, Moreira T, Ribeiro JA (2001) Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J Neurosci 21:8564–8571

  42. Zhang DS, Ren LM, Zhang L (2004) [Relation between adenosine A1 receptor and NMDA receptor on synaptic transmission in dentate gyrus of hippocampus]. Yao Xue Xue Bao 39:245–249

  43. Costenla AR, Diogenes MJ, Canas PM et al (2011) Enhanced role of adenosine a(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci 34:12–21. https://doi.org/10.1111/j.1460-9568.2011.07719.x

    Article  PubMed  Google Scholar 

  44. Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139:1019–1055. https://doi.org/10.1111/jnc.13724

    Article  CAS  PubMed  Google Scholar 

  45. Ribeiro FF, Xapelli S, Miranda-Lourenco C et al (2016) Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 104:226–242. https://doi.org/10.1016/j.neuropharm.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  46. Dong ZS, Cao ZP, Shang YJ et al (2019) Neuroprotection of cordycepin in NMDA-induced excitotoxicity by modulating adenosine A1 receptors. Eur J Pharmacol 853:325–335. https://doi.org/10.1016/j.ejphar.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  47. Jeronimo-Santos A, Vaz SH, Parreira S et al (2015) Dysregulation of TrkB receptors and BDNF function by amyloid-beta peptide is mediated by Calpain. Cereb cortex 25:3107–3121. https://doi.org/10.1093/cercor/bhu105

    Article  PubMed  Google Scholar 

  48. Ferreira DG, Temido-Ferreira M, Miranda H V, et al (2017) Alpha-synuclein interacts with PrP(C) to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 20:1569–1579. /https://doi.org/10.1038/nn.4648

  49. Horvat A, Zorec R, Vardjan N (2016) Adrenergic stimulation of single rat astrocytes results in distinct temporal changes in intracellular Ca(2+) and cAMP-dependent PKA responses. Cell calcium 59:156–163. https://doi.org/10.1016/j.ceca.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  50. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu rev Neurosci 24:31–55. https://doi.org/10.1146/annurev.neuro.24.1.31

    Article  CAS  PubMed  Google Scholar 

  51. Corradetti R, Lo Conte G, Moroni F et al (1984) Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur J Pharmacol 104:19–26. https://doi.org/10.1016/0014-2999(84)90364-9

    Article  CAS  PubMed  Google Scholar 

  52. Creager R, Dunwiddie T, Lynch G (1980) Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. J Physiol 299:409–424. https://doi.org/10.1113/jphysiol.1980.sp013133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu rev Physiol 64:355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547

    Article  CAS  PubMed  Google Scholar 

  54. Ongini E, Dionisotti S, Gessi S et al (1999) Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn Schmiedebergs arch Pharmacol 359:7–10. https://doi.org/10.1007/pl00005326

    Article  CAS  PubMed  Google Scholar 

  55. Ongini E, Monopoli A, Cacciari B, Baraldi PG (2001) Selective adenosine A2A receptor antagonists. Farmaco 56:87–90. https://doi.org/10.1016/s0014-827x(01)01024-2

    Article  CAS  PubMed  Google Scholar 

  56. Zocchi C, Ongini E, Conti A, Monopoli A, Negretti A, Baraldi PG, Dionisotti S (1996) The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist. J Pharmacol Exp Ther 276:398–404

    CAS  PubMed  Google Scholar 

  57. Iacobucci GJ, Popescu GK (2017) NMDA receptors: linking physiological output to biophysical operation. Nat rev Neurosci 18:236–249. https://doi.org/10.1038/nrn.2017.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sebastião AM, Ribeiro JA (2015) Neuromodulation and metamodulation by adenosine: impact and subtleties upon synaptic plasticity regulation. Brain res 1621:102–113. https://doi.org/10.1016/j.brainres.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  59. Daly JW, Fredholm BB (1998) Caffeine--an atypical drug of dependence. Drug Alcohol Depend 51:199–206

    Article  CAS  Google Scholar 

  60. Simons SB, Caruana DA, Zhao M, Dudek SM (2012) Caffeine-induced synaptic potentiation in hippocampal CA2 neurons. Nat Neurosci 15:23–25. https://doi.org/10.1038/nn.2962

    Article  CAS  Google Scholar 

  61. Martín ED, Buño W (2003) Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurophysiol 89:3029–3038. https://doi.org/10.1152/jn.00601.2002

    Article  PubMed  Google Scholar 

  62. McKinney RA (2010) Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 588:107–116. https://doi.org/10.1113/jphysiol.2009.178905

    Article  CAS  PubMed  Google Scholar 

  63. Manent JB, Represa A (2007) Neurotransmitters and brain maturation: early paracrine actions of GABA and glutamate modulate neuronal migration. Neuroscientist 13:268–279. https://doi.org/10.1177/1073858406298918

    Article  CAS  PubMed  Google Scholar 

  64. Schlett K (2006) Glutamate as a modulator of embryonic and adult neurogenesis. Curr Top Med Chem 6:949–960

    Article  CAS  Google Scholar 

  65. Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol rev 62:405–496. https://doi.org/10.1124/pr.109.002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Allene C, Cossart R (2010) Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations? J Physiol 588:83–91. https://doi.org/10.1113/jphysiol.2009.178798

    Article  CAS  PubMed  Google Scholar 

  67. Pereira-Figueiredo D, Brito R, Araújo DSM, et al (2020) Caffeine exposure ameliorates acute ischemic cell death in avian developing retina. Purinergic signal 16:41–59. /https://doi.org/10.1007/s11302-020-09687-1

  68. Silva CG, Métin C, Fazeli W, et al (2013) Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Sci Transl med 5:197ra104-197ra104. /https://doi.org/10.1126/scitranslmed.3006258

  69. Diógenes MJ, Assaife-Lopes N, Pinto-Duarte A et al (2007) Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus 17:577–585. https://doi.org/10.1002/hipo.20294

    Article  CAS  PubMed  Google Scholar 

  70. Dumas TC, Foster TC (1998) Late developmental changes in the ability of adenosine A1 receptors to regulate synaptic transmission in the hippocampus. Brain Res Dev Brain Res 105:137–139

    Article  CAS  Google Scholar 

  71. Coppi E, Pugliese AM, Stephan H et al (2007) Role of P2 purinergic receptors in synaptic transmission under normoxic and ischaemic conditions in the CA1 region of rat hippocampal slices. Purinergic signal 3:203–219. https://doi.org/10.1007/s11302-006-9049-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fusco I, Cherchi F, Catarzi D et al (2019) Functional characterization of a novel adenosine A2B receptor agonist on short-term plasticity and synaptic inhibition during oxygen and glucose deprivation in the rat CA1 hippocampus. Brain res bull 151:174–180. https://doi.org/10.1016/j.brainresbull.2019.05.018

    Article  CAS  PubMed  Google Scholar 

  73. Markram H, Segal M (1992) The inositol 1,4,5-trisphosphate pathway mediates cholinergic potentiation of rat hippocampal neuronal responses to NMDA. J Physiol 447:513–533. https://doi.org/10.1113/jphysiol.1992.sp019015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clark KA, Randall AD, Collingridge GL (1994) A comparison of paired-pulsed facilitation of AMPA and NMDA receptor-mediated excitatory postsynaptic currents in the hippocampus. Exp brain res 101:272–278. https://doi.org/10.1007/bf00228747

    Article  CAS  PubMed  Google Scholar 

  75. Fontinha BM, Delgado-García JM, Madroñal N et al (2009) Adenosine a(2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice. Neuropsychopharmacology 34:1865–1874. https://doi.org/10.1038/npp.2009.8

    Article  CAS  PubMed  Google Scholar 

  76. Pedata F, Pepeu G, Spignoli G (1984) Biphasic effect of methylxanthines on acetylcholine release from electrically-stimulated brain slices. Br J Pharmacol 83:69–73. https://doi.org/10.1111/j.1476-5381.1984.tb10120.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spignoli G, Pedata F, Pepeu G (1984) A1 and A2 adenosine receptors modulate acetylcholine release from brain slices. Eur J Pharmacol 97:341–342. https://doi.org/10.1016/0014-2999(84)90475-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors in Portugal are members of an EU twinning action (Project grant 952455). While revising this work, the authors want to make a special tribute to Geoffrey Burnstock for his great contributions to science, for defending and enlarging the knowledge of the purinergic field to the very end of his life, for his friendship and trust even in very difficult circumstances, which will never be forgotten. Thanks Geoff. Your legacy will last forever. We will miss your loud voice and laugh.

Code availability

Not applicable

Funding

Robertta Silva Martins was in receipt of a fellowship from Fundação de Amparo à Pesquisa do Estado do Rio de Jan eiro–FAPERJ, Brasil, Bolsa de Doutorado Sanduíche Europa/Oriente (grant number E-26/201.599/2018). The work was supported by Fundação para a Ciência e Tecnologia, Portugal (project grant PTDC/MED-FAR/30933/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Sebastião.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

All experimental procedures were performed according to European Community Guidelines (Directive 2010/63/EU) and the Portuguese Law (DL 113/2013) for animal care for research purposes and were approved by the “Instituto de Medicina Molecular” Internal Committee and the Portuguese Animal Ethics Committee - Direcção Geral de Veterinária.

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, R.S., Rombo, D.M., Gonçalves-Ribeiro, J. et al. Caffeine has a dual influence on NMDA receptor–mediated glutamatergic transmission at the hippocampus. Purinergic Signalling 16, 503–518 (2020). https://doi.org/10.1007/s11302-020-09724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09724-z

Keywords

Navigation