Skip to main content
Log in

Characterization of the N6-etheno-bridge method to assess extracellular metabolism of adenine nucleotides: detection of a possible role for purine nucleoside phosphorylase in adenosine metabolism

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,β-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li A, Banerjee J, Leung CT, Peterson-Yantorno K, Stamer WD, Civan MM (2011) Mechanisms of ATP release, the enabling step in purinergic dynamics, Cellular Physiology & Biochemistry. 28(6):1135–1144. https://doi.org/10.1159/000335865

  2. Fields RD (2011) Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 22(2):214–219. https://doi.org/10.1016/j.semcdb.2011.02.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cisneros-Mejorado A, Perez-Samartin A, Gottlieb M, Matute C (2015) ATP signaling in brain: release, excitotoxicity and potential therapeutic targets. Cell Mol Neurobiol 35(1):1–6. https://doi.org/10.1007/s10571-014-0092-3

    Article  PubMed  CAS  Google Scholar 

  4. Lohman AW, Billaud M, Isakson BE (2012) Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 95(3):269–280. https://doi.org/10.1093/cvr/cvs187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Westfall DP, Todorov LD, Mihaylova-Todorova ST (2002) ATP as a cotransmitter in sympathetic nerves and its inactivation by releasable enzymes. J Pharmacol Exp Ther 303(2):439–444

    Article  CAS  Google Scholar 

  7. Matsuoka I, Ohkubo S (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine receptor activation by ATP through rapid and localized generation of adenosine by ecto-nucleotidases. J Pharmacol Sci 94(2):95–99

    Article  CAS  Google Scholar 

  8. Gendron FP, Benrezzak O, Krugh BW, Kong Q, Weisman GA, Beaudoin AR (2002) Purine signaling and potential new therapeutic approach: possible outcomes of NTPDase inhibition. Curr Drug Targets 3(3):229–245

    Article  CAS  Google Scholar 

  9. Cunha RA, Sebastiao AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci 18(6):1987–1995

  10. Baqi Y (2015) Ecto-nucleotidase inhibitors: recent developments in drug discovery. Mini-Rev Med Chem 15(1):21–33

    Article  CAS  Google Scholar 

  11. al-Rashida M, Iqbal J (2014) Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5′-nucleotidase, and alkaline phosphatase inhibitors. Med Res Rev 34(4):703–743. https://doi.org/10.1002/med.21302

    Article  PubMed  CAS  Google Scholar 

  12. Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Auton Neurosci 191:117–123. https://doi.org/10.1016/j.autneu.2015.04.011

    Article  PubMed  CAS  Google Scholar 

  13. Burnstock G, Vaughn B, Robson SC (2014) Purinergic signalling in the liver in health and disease. Purinergic Signal 10(1):51–70. https://doi.org/10.1007/s11302-013-9398-8

    Article  PubMed  CAS  Google Scholar 

  14. Burnstock G, Ralevic V (2014) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66(1):102–192. https://doi.org/10.1124/pr.113.008029

    Article  PubMed  CAS  Google Scholar 

  15. Burnstock G, Pelleg A (2015) Cardiac purinergic signalling in health and disease. Purinergic Signal 11(1):1–46. https://doi.org/10.1007/s11302-014-9436-1

    Article  PubMed  CAS  Google Scholar 

  16. Burnstock G, Evans LC, Bailey MA (2014) Purinergic signalling in the kidney in health and disease. Purinergic Signal 10(1):71–101. https://doi.org/10.1007/s11302-013-9400-5

    Article  PubMed  CAS  Google Scholar 

  17. Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic Signal 10(4):529–564. https://doi.org/10.1007/s11302-014-9427-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120(1):207–228. https://doi.org/10.1161/CIRCRESAHA.116.309726

    Article  PubMed  CAS  Google Scholar 

  19. Burnstock G (2015) Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 11(4):411–434. https://doi.org/10.1007/s11302-015-9462-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Burnstock G (2014) Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 10(1):103–155. https://doi.org/10.1007/s11302-013-9395-y

    Article  PubMed  CAS  Google Scholar 

  21. Burnstock G (2014) Purinergic signalling in endocrine organs. Purinergic Signal 10(1):189–231. https://doi.org/10.1007/s11302-013-9396-x

    Article  PubMed  CAS  Google Scholar 

  22. Andersson KE (2015) Purinergic signalling in the urinary bladder. Auton Neurosci 191:78–81. https://doi.org/10.1016/j.autneu.2015.04.012

    Article  PubMed  CAS  Google Scholar 

  23. Burnstock G (2016) Purinergic signalling in the gut. Adv Exp Med Biol 891:91–112. https://doi.org/10.1007/978-3-319-27592-5_10

    Article  PubMed  CAS  Google Scholar 

  24. Sanderson J, Dartt DA, Trinkaus-Randall V, Pintor J, Civan MM, Delamere NA, Fletcher EL, Salt TE, Grosche A, Mitchell CH (2014) Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Muller cells, lens, trabecular meshwork, cornea and lacrimal gland. Exp Eye Res 127:270–279. https://doi.org/10.1016/j.exer.2014.08.009

    Article  PubMed  CAS  Google Scholar 

  25. Schwiebert EM, Kishore BK (2001) Extracellular nucleotide signaling along the renal epithelium. Am J Physiol Ren Physiol 280(6):F945–F963

    Article  CAS  Google Scholar 

  26. Vallon V, Rieg T (2011) Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Ren Physiol 301(3):F463–F475. https://doi.org/10.1152/ajprenal.00236.2011

  27. Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367(24):2322–2333. https://doi.org/10.1056/NEJMra1205750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sitkovsky M, Ohta A (2013) Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J Mol Med 91(2):147–155. https://doi.org/10.1007/s00109-013-1001-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cronstein BN, Sitkovsky M (2017) Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 13(1):41–51. https://doi.org/10.1038/nrrheum.2016.178

    Article  PubMed  CAS  Google Scholar 

  30. Hasko G, Sitkovsky MV, Szabo C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25(3):152–157

    Article  CAS  Google Scholar 

  31. Ohta A, Sitkovsky M (2011, 200) Methylxanthines, inflammation, and cancer: fundamental mechanisms. Handb Exp Pharmacol:469–481. https://doi.org/10.1007/978-3-642-13443-2_19

  32. Schuler PJ, Westerkamp AM, Kansy BA, Bruderek K, Dissmann PA, Dumitru CA, Lang S, Jackson EK, Brandau S (2017) Adenosine metabolism of human mesenchymal stromal cells isolated from patients with head and neck squamous cell carcinoma. Immunobiology 222(1):66–74. https://doi.org/10.1016/j.imbio.2016.01.013

    Article  PubMed  CAS  Google Scholar 

  33. Jackson EK, Kotermanski SE, Menshikova EV, Dubey RK, Jackson TC, Kochanek PM (2017) Adenosine production by brain cells. J Neurochem 141(5):676–693. https://doi.org/10.1111/jnc.14018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Norton ED, Jackson EK, Virmani R, Forman MB (1991) Effect of intravenous adenosine on myocardial reperfusion injury in a model with low myocardial collateral blood flow. Am Heart J 122(5):1283–1291

    Article  CAS  Google Scholar 

  35. Jackson EK, Dubey RK (2001) Role of the extracellular cAMP-adenosine pathway in renal physiology. Am J Physiol Ren Physiol 281(4):F597–F612

    Article  CAS  Google Scholar 

  36. Dubey RK, Fingerle J, Gillespie DG, Mi Z, Rosselli M, Imthurn B, Jackson EK (2015) Adenosine attenuates human coronary artery smooth muscle cell proliferation by inhibiting multiple signaling pathways that converge on cyclin D. Hypertension 66(6):1207–1219. https://doi.org/10.1161/hypertensionaha.115.05912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jackson EK, Cheng D, Tofovic SP, Mi Z (2012) Endogenous adenosine contributes to renal sympathetic neurotransmission via postjunctional A1 receptor-mediated coincident signaling. Am J Physiol Ren Physiol 302(4):F466–F476

    Article  CAS  Google Scholar 

  38. Jackson EK, Cheng D, Mi Z, Verrier JD, Janesko-Feldman K, Kochanek PM (2012) Role of A1 receptors in renal sympathetic neurotransmission in the mouse kidney. Am J Physiol Ren Physiol 303(7):F1000–F1005. https://doi.org/10.1152/ajprenal.00363.2012

    Article  CAS  Google Scholar 

  39. Villa-Bellosta R, Hamczyk MR, Andres V (2016) Alternatively activated macrophages exhibit an anticalcifying activity dependent on extracellular ATP/pyrophosphate metabolism. Am J Phys Cell Phys 310(10):C788–C799. https://doi.org/10.1152/ajpcell.00370.2015

    Article  Google Scholar 

  40. Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acin-Perez R, Enriquez JA, Lopez-Otin C, Andres V (2013) Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127(24):2442–2451. https://doi.org/10.1161/CIRCULATIONAHA.112.000571

    Article  PubMed  CAS  Google Scholar 

  41. Villa-Bellosta R, Sorribas V (2013) Prevention of vascular calcification by polyphosphates and nucleotides—role of ATP. Circ J 77(8):2145–2151

    Article  CAS  Google Scholar 

  42. Fish RS, Klootwijk E, Tam FW, Kleta R, Wheeler DC, Unwin RJ, Norman J (2013) ATP and arterial calcification. Eur J Clin Investig 43(4):405–412. https://doi.org/10.1111/eci.12055

    Article  CAS  Google Scholar 

  43. Coolen EJ, Arts IC, Swennen EL, Bast A, Stuart MA, Dagnelie PC (2008) Simultaneous determination of adenosine triphosphate and its metabolites in human whole blood by RP-HPLC and UV-detection. J Chromatography B: Analytical Technol Biomed Life Sci 864(1-2):43–51. https://doi.org/10.1016/j.jchromb.2008.01.033

    Article  CAS  Google Scholar 

  44. Ipata PL, Camici M, Micheli V, Tozz MG (2011) Metabolic network of nucleosides in the brain. Curr Top Med Chem 11(8):909–922

    Article  CAS  Google Scholar 

  45. Zabielska MA, Borkowski T, Slominska EM, Smolenski RT (2015) Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology. Pharmacol Rep 67(4):682–688. https://doi.org/10.1016/j.pharep.2015.04.007

    Article  PubMed  CAS  Google Scholar 

  46. Moriwaki Y, Yamamoto T, Higashino K (1999) Enzymes involved in purine metabolism—a review of histochemical localization and functional implications. Histol Histopathol 14(4):1321–1340. https://doi.org/10.14670/HH-14.1321

    Article  PubMed  CAS  Google Scholar 

  47. Levitt B, Head RJ, Westfall DP (1984) High-pressure liquid chromatographic-fluorometric detection of adenosine and adenine nucleotides: application to endogenous content and electrically induced release of adenyl purines in guinea pig vas deferens. Anal Biochem 137(1):93–100

    Article  CAS  Google Scholar 

  48. Haink G, Deussen A (2003) Liquid chromatography method for the analysis of adenosine compounds. Journal of Chromatography B: Analytical Technologies in the Biomedical & Life Sciences 784(1):189–193

    Article  CAS  Google Scholar 

  49. Tatur S, Kreda S, Lazarowski E, Grygorczyk R (2008) Calcium-dependent release of adenosine and uridine nucleotides from A549 cells. Purinergic Signal 4(2):139–146. https://doi.org/10.1007/s11302-007-9059-x

    Article  PubMed  CAS  Google Scholar 

  50. Jackson EK, Mi Z, Koehler MT, Carcillo J, Herzer WA (1996) Injured erythrocytes release adenosine deaminase into the circulation. J Pharmacol Exp Ther 279(3):1250–1260

    PubMed  CAS  Google Scholar 

  51. Clark RS, Carcillo JA, Kochanek PM, Obrist WD, Jackson EK, Mi Z, Wisneiwski SR, Bell MJ, Marion DW (1997) Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery 41(6):1284–1293

    Article  CAS  Google Scholar 

  52. Todorov LD, Mihaylova-Todorova S, Westfall TD, Sneddon P, Kennedy C, Bjur RA, Westfall DP (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387(6628):76–79

    Article  CAS  Google Scholar 

  53. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110(7):993–1002. https://doi.org/10.1172/jci15337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Eltzschig HK, Ibla JC, Furuta GT, Leonard MO, Jacobson KA, Enjyoji K, Robson SC, Colgan SP (2003) Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198(5):783–796. https://doi.org/10.1084/jem.20030891

  55. Bobalova J, Mutafova-Yambolieva VN (2003) Membrane-bound and releasable nucleotidase activities: differences in canine mesenteric artery and vein. Clin Exp Pharmacol Physiol 30(3):194–202

    Article  CAS  Google Scholar 

  56. Koszalka P, Ozuyaman B, Huo Y, Zernecke A, Flogel U, Braun N, Buchheiser A, Decking UK, Smith ML, Sevigny J, Gear A, Weber AA, Molojavyi A, Ding Z, Weber C, Ley K, Zimmermann H, Godecke A, Schrader J (2004) Targeted disruption of cd73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ Res 95(8):814–821. https://doi.org/10.1161/01.RES.0000144796.82787.6f

    Article  CAS  Google Scholar 

  57. Diniz C, Fresco P, Goncalves J (2005) Regional differences in extracellular purine degradation in the prostatic and epididymal portions of the rat vas deferens. Clin Exp Pharmacol Physiol 32(9):721–727

    Article  CAS  Google Scholar 

  58. Romio M, Reinbeck B, Bongardt S, Huls S, Burghoff S, Schrader J (2011) Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Phys Cell Phys 301(2):C530–C539. https://doi.org/10.1152/ajpcell.00385.2010

    Article  CAS  Google Scholar 

  59. Burghoff S, Gong X, Viethen C, Jacoby C, Flogel U, Bongardt S, Schorr A, Hippe A, Homey B, Schrader J (2014) Growth and metastasis of B16-F10 melanoma cells is not critically dependent on host CD73 expression in mice. BMC Cancer 14:898. https://doi.org/10.1186/1471-2407-14-898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Caiazzo E, Maione F, Morello S, Lapucci A, Paccosi S, Steckel B, Lavecchia A, Parenti A, Iuvone T, Schrader J, Ialenti A, Cicala C (2016) Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide. Biochem Pharmacol 112:72–81. https://doi.org/10.1016/j.bcp.2016.05.006

    Article  PubMed  CAS  Google Scholar 

  61. Hesse J, Leberling S, Boden E, Friebe D, Schmidt T, Ding Z, Dieterich P, Deussen A, Roderigo C, Rose CR, Floss DM, Scheller J, Schrader J (2017) CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. FASEB J 31(7):3040–3053. https://doi.org/10.1096/fj.201601307R

    Article  PubMed  CAS  Google Scholar 

  62. Dubey RK, Gillespie DG, Mi Z, Jackson EK (1997) Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: role of A2B receptors. Circulation 96:2656–2666

    Article  CAS  Google Scholar 

  63. Zhu X, Gillespie DG, Jackson EK (2015) NPY1-36 and PYY1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4. Am J Physiol Heart Circ Physiol 309(9):H1528–H1542. https://doi.org/10.1152/ajpheart.00070.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhu X, Jackson EK (2017) RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells. Am J Physiol Ren Physiol 312(4):F565–f576. https://doi.org/10.1152/ajprenal.00547.2016

    Article  CAS  Google Scholar 

  65. Inoue T, Mi Z, Gillespie DG, Jackson EK (1998) Cyclooxygenase inhibition reveals synergistic action of vasoconstrictors on mesangial cell growth. Eur J Pharmacol 361(2–3):285–291

    Article  CAS  Google Scholar 

  66. Jackson EK, Mi Z, Kleyman TR, Cheng D (2018) 8-Aminoguanine induces diuresis, natriuresis, and glucosuria by inhibiting purine nucleoside phosphorylase and reduces potassium excretion by inhibiting Rac1. J Am Heart Assoc 7(21):e010085. https://doi.org/10.1161/jaha.118.010085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bzowska A, Kulikowska E, Shugar D (2000) Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol Ther 88(3):349–425

    Article  CAS  Google Scholar 

  68. Stachelska-Wierzchowska A, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B (2018) Tricyclic nitrogen base 1,N6-ethenoadenine and its ribosides as substrates for purine-nucleoside phosphorylases: spectroscopic and kinetic studies. Nucleosides Nucleotides Nucleic Acids 37(2):89–101. https://doi.org/10.1080/15257770.2017.1419255

    Article  PubMed  CAS  Google Scholar 

  69. Chern JW, Lee HY, Chen CS, Shewach DS, Daddona PE, Townsend LB (1993) Nucleosides. 5. Synthesis of guanine and formycin B derivatives as potential inhibitors of purine nucleoside phosphorylase. J Med Chem 36(8):1024–1031

    Article  CAS  Google Scholar 

  70. Gandhi V, Kilpatrick JM, Plunkett W, Ayres M, Harman L, Du M, Bantia S, Davisson J, Wierda WG, Faderl S, Kantarjian H, Thomas D (2005) A proof-of-principle pharmacokinetic, pharmacodynamic, and clinical study with purine nucleoside phosphorylase inhibitor immucillin-H (BCX-1777, forodesine). Blood 106(13):4253–4260

    Article  CAS  Google Scholar 

  71. Bjelobaba I, Janjic MM, Stojilkovic SS (2015) Purinergic signaling pathways in endocrine system. Auton Neurosci 191:102–116. https://doi.org/10.1016/j.autneu.2015.04.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36(3):293–303. https://doi.org/10.1038/onc.2016.206

    Article  PubMed  CAS  Google Scholar 

  73. Gohar EY, Kasztan M, Pollock DM (2017) Interplay between renal endothelin and purinergic signaling systems. Am J Physiol Ren Physiol 313(3):F666–F668. https://doi.org/10.1152/ajprenal.00639.2016

    Article  CAS  Google Scholar 

  74. Kling L, Kramer BK, Yard BA, Kalsch AI (2018) The adenosinergic system: a potential player in the pathogenesis of ANCA-associated vasculitis? Clin Exp Rheumatol 36 Suppl 111(2):143–151

    PubMed  Google Scholar 

  75. Koles L, Furst S, Illes P (2007) Purine ionotropic (P2X) receptors. Curr Pharm Des 13(23):2368–2384

    Article  CAS  Google Scholar 

  76. Longhi MS, Moss A, Jiang ZG, Robson SC (2017) Purinergic signaling during intestinal inflammation. J Mol Med 95(9):915–925. https://doi.org/10.1007/s00109-017-1545-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Martinez-Ramirez AS, Diaz-Munoz M, Butanda-Ochoa A, Vazquez-Cuevas FG (2017) Nucleotides and nucleoside signaling in the regulation of the epithelium to mesenchymal transition (EMT). Purinergic Signal 13(1):1–12. https://doi.org/10.1007/s11302-016-9550-3

    Article  PubMed  CAS  Google Scholar 

  78. Ochoa-Cortes F, Linan-Rico A, Jacobson KA, Christofi FL (2014) Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis 20(7):1259–1287. https://doi.org/10.1097/MIB.0000000000000047

    Article  PubMed  PubMed Central  Google Scholar 

  79. Strazzulla LC, Cronstein BN (2016) Regulation of bone and cartilage by adenosine signaling. Purinergic Signal 12(4):583–593

    Article  CAS  Google Scholar 

  80. Sun K, Liu H, Song A, Manalo JM, D'Alessandro A, Hansen KC, Kellems RE, Eltzschig HK, Blackburn MR, Roach RC, Xia Y (2017) Erythrocyte purinergic signaling components underlie hypoxia adaptation. J Appl Physiol 123(4):951–956. https://doi.org/10.1152/japplphysiol.00155.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zeiser R, Robson SC, Vaikunthanathan T, Dworak M, Burnstock G (2016) Unlocking the potential of Purinergic signaling in transplantation. Am J Transplant 16(10):2781–2794. https://doi.org/10.1111/ajt.13801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Menzies RI, Tam FW, Unwin RJ, Bailey MA (2017) Purinergic signaling in kidney disease. Kidney Int 91(2):315–323. https://doi.org/10.1016/j.kint.2016.08.029

    Article  PubMed  CAS  Google Scholar 

  83. Lee JS, Yilmaz O (2018) Unfolding role of a danger molecule adenosine signaling in modulation of microbial infection and host cell response. Int J Mol Sci 19(1). https://doi.org/10.3390/ijms19010199

  84. Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M (2017) Purinergic P2Y receptors: molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 180:113–128. https://doi.org/10.1016/j.pharmthera.2017.06.010

    Article  PubMed  CAS  Google Scholar 

  85. Hausmann R, Kless A, Schmalzing G (2015) Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem 22(7):799–818

    Article  CAS  Google Scholar 

  86. Trincavelli ML, Daniele S, Martini C (2010) Adenosine receptors: what we know and what we are learning. Curr Top Med Chem 10(9):860–877

    Article  CAS  Google Scholar 

  87. Durnin L, Moreland N, Lees A, Mutafova-Yambolieva VN (2016) A commonly used ecto-ATPase inhibitor, ARL-67156, blocks degradation of ADP more than the degradation of ATP in murine colon. Neurogastroenterology and Motility : the official journal of the European Gastrointestinal Motility Society 28(9):1370–1381. https://doi.org/10.1111/nmo.12836

    Article  CAS  Google Scholar 

  88. Wehbe K, Vezzalini M, Cinque G (2018) Detection of mycoplasma in contaminated mammalian cell culture using FTIR microspectroscopy. Anal Bioanal Chem 410(12):3003–3016. https://doi.org/10.1007/s00216-018-0987-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the NIH (NS087978, DK091190, HL109002, HL069846, DK068575, and DK079307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin K. Jackson.

Ethics declarations

Conflicts of interest

Edwin K. Jackson declares that he has no conflict of interest.

Delbert G. Gillespie declares that he has no conflict of interest.

Dongmei Cheng declares that he has no conflict of interest.

Zaichuan Mi declares that he has no conflict of interest.

Elizabeth V. Menshikova declares that she has no conflict of interest.

Ethical approval

The Institutional Animal Care and Use Committee approved all procedures.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, E.K., Gillespie, D.G., Cheng, D. et al. Characterization of the N6-etheno-bridge method to assess extracellular metabolism of adenine nucleotides: detection of a possible role for purine nucleoside phosphorylase in adenosine metabolism. Purinergic Signalling 16, 187–211 (2020). https://doi.org/10.1007/s11302-020-09699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09699-x

Keywords

Navigation