Skip to main content
Log in

Adenosine A2B receptors play an important role in bone homeostasis

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Bone homeostasis is a finely regulated mechanism involving different molecular pathways including adenosine signaling. The aim of this study is to determine the bone phenotype of adenosine A2B receptor knockout (A2BRKO) mice and to measure their ability to form new bone. Moreover, we analyzed the functionality of osteoclasts and osteoblasts from A2BRKO mice. Microcomputed tomography (μCT) analysis revealed a decrease of bone substance, bone mineral density, and trabecular number in A2BRKO mice compared to the WT mice at the same age. We measured the new bone formation by injecting fluorescent markers: it was reduced in femur and tibia of A2BRKO mice compare to the WT. A2BRKO young mice have fewer osteoblasts and an increase of osteoclasts was measured in the hind limbs of young and adult mice. A2BRKO osteoclasts are also more active in vitro, showing an increase of pit formation in dentin discs. Surprisingly in mature osteoblasts from A2BRKO mice, we measured an increase of calcified matrix production, collagen deposition, and alkaline phosphatase activity. These results demonstrate that A2BR on osteoblasts and osteoclasts regulate bone homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mediero A, Cronstein BN (2013) Adenosine and bone metabolism. Trends Endocrinol Metab 24(6):290–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. He W, Cronstein BN (2012) Adenosine A1 receptor regulates osteoclast formation by altering TRAF6/TAK1 signaling. Purinergic Signal 8(2):327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He W et al (2013) Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J 27(9):3446–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He W, Wilder T, Cronstein BN (2013) Rolofylline, an adenosine A1 receptor antagonist, inhibits osteoclast differentiation as an inverse agonist. Br J Pharmacol 170(6):1167–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mediero A et al (2012) Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci Transl Med 4(135):135ra65

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mediero A et al (2012) Adenosine A(2A) receptor ligation inhibits osteoclast formation. Am J Pathol 180(2):775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mediero A, Perez-Aso M, Cronstein BN (2013) Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFkappaB nuclear translocation. Br J Pharmacol 169(6):1372–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mediero A et al (2015) Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J 29(4):1577–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carroll SH et al (2012) A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 287(19):15718–15727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takedachi M et al (2012) CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol 227(6):2622–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ciciarello M et al (2013) Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Stem Cells Dev 22(7):1097–1111

    Article  CAS  PubMed  Google Scholar 

  12. Trincavelli ML et al (2014) Osteoblast differentiation and survival: a role for A2B adenosine receptor allosteric modulators. Biochim Biophys Acta 1843(12):2957–2966

    Article  CAS  PubMed  Google Scholar 

  13. Kang H, Shih YR, Varghese S (2015) Biomineralized matrices dominate soluble cues to direct osteogenic differentiation of human mesenchymal stem cells through adenosine signaling. Biomacromolecules 16(3):1050–1061

    Article  CAS  PubMed  Google Scholar 

  14. Kara FM et al (2010) Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J 24(7):2325–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bakker AD, Klein-Nulend J (2012) Osteoblast isolation from murine calvaria and long bones. Methods Mol Biol 816:19–29

    Article  CAS  PubMed  Google Scholar 

  16. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–25108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noronha-Matos J.B., Correia-de-Sa P. Mesenchymal stem cells ageing: targeting the “purinome” to promote osteogenic differentiation and bone repair. J Cell Physiol. 2016.

  18. Wei W et al (2013) Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol 190(1):138–146

    Article  CAS  PubMed  Google Scholar 

  19. Volpini R et al (2003) Medicinal chemistry and pharmacology of A2B adenosine receptors. Curr Top Med Chem 3(4):427–443

    Article  CAS  PubMed  Google Scholar 

  20. Evans BA et al (2006) Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J Bone Miner Res 21(2):228–236

    Article  CAS  PubMed  Google Scholar 

  21. Le Goff B et al (2010) Role for interleukin-6 in structural joint damage and systemic bone loss in rheumatoid arthritis. Joint Bone Spine 77(3):201–205

    Article  PubMed  Google Scholar 

  22. de Franca NA et al (2016) Dietary patterns and bone mineral density in Brazilian postmenopausal women with osteoporosis: a cross-sectional study. Eur J Clin Nutr 70(1):85–90

    Article  PubMed  Google Scholar 

  23. ToRo KOR (2013) A study of risk factors and T-score variability in Romanian women with postmenopausal osteoporosis. Iran J Public Health 42(12):1387–1397

    Google Scholar 

  24. Hallstrom H et al (2013) Long-term coffee consumption in relation to fracture risk and bone mineral density in women. Am J Epidemiol 178(6):898–909

    Article  PubMed  Google Scholar 

  25. Hallstrom H et al (2006) Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos Int 17(7):1055–1064

    Article  CAS  PubMed  Google Scholar 

  26. Harris SS, Dawson-Hughes B (1994) Caffeine and bone loss in healthy postmenopausal women. Am J Clin Nutr 60(4):573–578

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (5R01AR068593-02), Clinical and Translational Science Institute (1UL1TR001445-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Corciulo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corciulo, C., Wilder, T. & Cronstein, B.N. Adenosine A2B receptors play an important role in bone homeostasis. Purinergic Signalling 12, 537–547 (2016). https://doi.org/10.1007/s11302-016-9519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9519-2

Keywords

Navigation