Skip to main content

Adenosine Receptors Regulate Bone Remodeling and Cartilage Physiology

  • Chapter
  • First Online:
The Adenosine Receptors

Part of the book series: The Receptors ((REC,volume 34))

Abstract

Bone is a dynamic tissue that undergoes constant remodeling. Many intercellular messengers and cellular mechanisms regulate the rate and efficacy of bone remodeling, and disruption of this process can lead to such pathology as osteopenia and osteoporosis on one hand and osteopetrosis on the other. Results of recent studies indicate a central role for adenosine and its receptors in the control of bone and cartilage metabolism. Many studies using pharmacological and genetic approaches were performed in different laboratories in order to clarify the role, sometimes controversial, of adenosine in the skeletal system.

New bone formation during fractures or during development depends on differentiation and function of osteoblasts. Osteoblast differentiation and mineral deposition are processes stimulated by A2A and A2B adenosine receptors (A2AR and A2BR). A2AR and A2BR also block the differentiation and function of osteoclasts, the multinucleated giant cells that mediate bone resorption. In contrast the A1 adenosine receptor plays a prominent role in osteoclast where it stimulates their activity in bone resorption. Moreover it has been shown recently from our laboratory and previously from others that adenosine receptor, through A2AR, exerts an important role in cartilage protection during mechanical stress, inflammation, and osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson HC (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5(3):222–226

    Article  PubMed  Google Scholar 

  • Ballarin M, Fredholm BB, Ambrosio S et al (1991) Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol Scand 142(1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yehuda S, Rath-Wolfson L, Del Valle L et al (2009) Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. Arthritis Rheum 60(10):3061–3071

    Article  CAS  PubMed  Google Scholar 

  • Benton HP, MacDonald MH, Tesch AM (2002) Effects of adenosine on bacterial lipopolysaccharide- and interleukin 1-induced nitric oxide release from equine articular chondrocytes. Am J Vet Res 63(2):204–210

    Article  CAS  PubMed  Google Scholar 

  • Bitto A, Polito F, Irrera N, D'Ascola A et al (2011) Polydeoxyribonucleotide reduces cytokine production and the severity of collagen-induced arthritis by stimulation of adenosine A((2)A) receptor. Arthritis Rheum 63(11):3364–3371

    Article  CAS  PubMed  Google Scholar 

  • Bradaschia-Correa V, Josephson AM, Egol AJ et al (2017) Ecto-5′-nucleotidase (CD73) regulates bone formation and remodeling during intramembranous bone repair in aging mice. Tissue Cell 49(5):545–551

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2016) An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 104:4–17

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Cocks T, Crowe R et al (1978) Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol 63(1):125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll SH, Wigner NA, Kulkarni N et al (2012) A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 287(19):15718–15727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16(3):177–192

    Article  CAS  PubMed  Google Scholar 

  • Chan ES, Cronstein BN (2010) Methotrexate--how does it really work? Nat Rev Rheumatol 6(3):175–178

    Article  CAS  PubMed  Google Scholar 

  • Corciulo C, Wilder T, Cronstein BN (2016) Adenosine A2B receptors play an important role in bone homeostasis. Purinergic Signal 12(3):537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corciulo C, Lendhey M, Wilder T et al (2017) Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nat Commun 8:15019

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronstein BN, Naime D, Ostad E (1993) The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 92(6):2675–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Virgilio F, Adinolfi E (2016) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery NJ (2006) Cognitive ornithology: the evolution of avian intelligence. Philosophical transactions of the Royal Society of London. Series B: Biol Sci 361(1465):23–43

    Google Scholar 

  • Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14(7):1315–1323

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, AP IJ, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    PubMed  CAS  Google Scholar 

  • Fredholm BB, AP IJ, Jacobson KA et al (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 63(1):1–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg P, Mazur MM, Buck AC et al (2017) Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg 9(1):13–19

    Article  PubMed  Google Scholar 

  • Hajjawi MO, Patel JJ, Corcelli M et al (2016) Lack of effect of adenosine on the function of rodent osteoblasts and osteoclasts in vitro. Purinergic Signal 12(2):247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Cronstein BN (2012) Adenosine A1 receptor regulates osteoclast formation by altering TRAF6/TAK1 signaling. Purinergic Signal 8(2):327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Mazumder A, Wilder T et al (2013a) Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J 27(9):3446–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Wilder T, Cronstein BN (2013b) Rolofylline, an adenosine A1 receptor antagonist, inhibits osteoclast differentiation as an inverse agonist. Br J Pharmacol 170(6):1167–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmatian H, Bakker AD, Klein-Nulend J et al (2017) Aging, osteocytes, and mechanotransduction. Curr Osteoporos Rep 15(5):401–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Henriksen K, Bollerslev J, Everts V et al (2011) Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocr Rev 32(1):31–63

    Article  CAS  PubMed  Google Scholar 

  • Hoebertz A, Arnett TR, Burnstock G (2003) Regulation of bone resorption and formation by purines and pyrimidines. Trends Pharmacol Sci 24(6):290–297

    Article  CAS  PubMed  Google Scholar 

  • Honig M, Albert MH, Schulz A et al (2007) Patients with adenosine deaminase deficiency surviving after hematopoietic stem cell transplantation are at high risk of CNS complications. Blood 109(8):3595–3602

    Article  CAS  PubMed  Google Scholar 

  • Ishack S, Mediero A, Wilder T et al (2015) Bone regeneration in critical bone defects using three-dimensionally printed beta-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J Biomed Mater Res B Appl Biomater 105(2):366–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivashkiv LB, Zhao B, Park-Min KH et al (2011) Feedback inhibition of osteoclastogenesis during inflammation by IL-10, M-CSF receptor shedding, and induction of IRF8. Ann N Y Acad Sci 1237:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Ko HM, Moon JS et al (2014) Osteoprotegerin expressed by osteoclasts: an autoregulator of osteoclastogenesis. J Dent Res 93(11):1116–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kara FM, Chitu V, Sloane J et al (2010a) Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J 24(7):2325–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kara FM, Doty SB, Boskey A et al (2010b) Adenosine A(1) receptors regulate bone resorption in mice: adenosine A(1) receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A(1) receptor-knockout mice. Arthritis Rheum 62(2):534–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kim N (2016) Signaling pathways in osteoclast differentiation. Chonnam Med J 52(1):12–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim N, Kadono Y, Takami M et al (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202(5):589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein-Nulend J, Bakker AD, Bacabac RG et al (2013) Mechanosensation and transduction in osteocytes. Bone 54(2):182–190

    Article  CAS  PubMed  Google Scholar 

  • Manson D, Diamond L, Oudjhane K et al (2013) Characteristic scapular and rib changes on chest radiographs of children with ADA-deficiency SCIDS in the first year of life. Pediatr Radiol 43(5):589–592

    Article  PubMed  Google Scholar 

  • Marie PJ, Hay E, Saidak Z (2014) Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol Metab 25(11):567–575

    Article  CAS  PubMed  Google Scholar 

  • Mazzon E, Esposito E, Impellizzeri D et al (2011) CGS 21680, an agonist of the adenosine (A2A) receptor, reduces progression of murine type II collagen-induced arthritis. J Rheumatol 38(10):2119–2129

    Article  CAS  PubMed  Google Scholar 

  • Mediero A, Frenkel SR, Wilder T et al (2012a) Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci Transl Med 4(135):135ra165

    Article  CAS  Google Scholar 

  • Mediero A, Kara FM, Wilder T et al (2012b) Adenosine A(2A) receptor ligation inhibits osteoclast formation. Am J Pathol 180(2):775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mediero A, Perez-Aso M, Wilder T et al (2015a) Brief report: methotrexate prevents wear particle-induced inflammatory osteolysis in mice via activation of adenosine A2A receptor. Arthritis Rheumatol 67(3):849–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mediero A, Wilder T, Perez-Aso M et al (2015b) Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J 29(4):1577–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mediero A, Wilder T, Reddy VS et al (2016) Ticagrelor regulates osteoblast and osteoclast function and promotes bone formation in vivo via an adenosine-dependent mechanism. FASEB J 30(11):3887–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry D, Chambers MG, Mason RM (2006) The role of adenosine in chondrocyte death in murine osteoarthritis and in a murine chondrocyte cell line. Osteoarthr Cartil 14(5):486–495

    Article  CAS  PubMed  Google Scholar 

  • Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  CAS  PubMed  Google Scholar 

  • Orriss IR, Burnstock G, Arnett TR (2010) Purinergic signalling and bone remodelling. Curr Opin Pharmacol 10(3):322–330

    Article  CAS  PubMed  Google Scholar 

  • Park-Min KH, Ji JD, Antoniv T et al (2009) IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immunol 183(4):2444–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegatti P, Falzoni S, Donvito G et al (2011) P2X7 receptor drives osteoclast fusion by increasing the extracellular adenosine concentration. FASEB J 25(4):1264–1274

    Article  CAS  PubMed  Google Scholar 

  • Perez-Aso M, Mediero A, Low YC et al (2016) Adenosine A2A receptor plays an important role in radiation-induced dermal injury. FASEB J 30(1):457–465

    Article  CAS  PubMed  Google Scholar 

  • Ponte AL, Marais E, Gallay N et al (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7):1737–1745

    Article  CAS  PubMed  Google Scholar 

  • Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45(8 Pt 2):1353–1358

    PubMed  CAS  Google Scholar 

  • Rath-Wolfson L, Bar-Yehuda S, Madi L (2006) IB-MECA, an A3 adenosine receptor agonist prevents bone resorption in rats with adjuvant induced arthritis. Clin Exp Rheumatol 24(4):400–406

    PubMed  CAS  Google Scholar 

  • Sauer AV, Mrak E, Hernandez RJ et al (2009) ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency. Blood 114(15):3216–3226

    Article  CAS  PubMed  Google Scholar 

  • Sheth S, Brito R, Mukherjea D et al (2014) Adenosine receptors: expression, function and regulation. Int J Mol Sci 15(2):2024–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Strazzulla LC, Cronstein BN (2016) Regulation of bone and cartilage by adenosine signaling. Purinergic Signal 12(4):583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takedachi M, Oohara H, Smith BJ et al (2012) CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol 227(6):2622–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8):638–649

    Article  CAS  Google Scholar 

  • Tesch AM, MacDonald MH, Kollias-Baker C et al (2002) Chondrocytes respond to adenosine via A(2)receptors and activity is potentiated by an adenosine deaminase inhibitor and a phosphodiesterase inhibitor. Osteoarthr Cartil 10(1):34–43

    Article  CAS  PubMed  Google Scholar 

  • Tesch AM, MacDonald MH, Kollias-Baker C et al (2004) Endogenously produced adenosine regulates articular cartilage matrix homeostasis: enzymatic depletion of adenosine stimulates matrix degradation. Osteoarthr Cartil 12(5):349–359

    Article  CAS  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736

    Article  CAS  PubMed  Google Scholar 

  • Varani K, De Mattei M, Vincenzi F et al (2008a) Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthr Cartil 16(3):292–304

    Article  CAS  PubMed  Google Scholar 

  • Varani K, De Mattei M, Vincenzi F et al (2008b) Pharmacological characterization of P2X1 and P2X3 purinergic receptors in bovine chondrocytes. Osteoarthr Cartil 16(11):1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Velasquez S, Eugenin EA (2014) Role of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases. Front Physiol 5:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincenzi F, Targa M, Corciulo C et al (2013) Pulsed electromagnetic fields increased the anti-inflammatory effect of A(2)A and A(3) adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8(5):e65561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Jung JU, Guo HH et al (2017) Osteoblastic Lrp4 promotes osteoclastogenesis by regulating ATP release and adenosine-A2AR signaling. J Cell Biol 216(3):761–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JD, Yao SY, Baldwin JM et al (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Asp Med 34(2–3):529–547

    Article  CAS  Google Scholar 

  • Yu S, Sharma R, Nie D et al (2013) ADAR1 ablation decreases bone mass by impairing osteoblast function in mice. Gene 513(1):101–110

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Neil Cronstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corciulo, C., Irrera, N., Cronstein, B.N. (2018). Adenosine Receptors Regulate Bone Remodeling and Cartilage Physiology. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_21

Download citation

Publish with us

Policies and ethics