Skip to main content
Log in

Purinergic signalling in a latent stem cell niche of the rat spinal cord

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The ependyma of the spinal cord harbours stem cells which are activated by traumatic spinal cord injury. Progenitor-like cells in the central canal (CC) are organized in spatial domains. The cells lining the lateral aspects combine characteristics of ependymocytes and radial glia (RG) whereas in the dorsal and ventral poles, CC-contacting cells have the morphological phenotype of RG and display complex electrophysiological phenotypes. The signals that may affect these progenitors are little understood. Because ATP is massively released after spinal cord injury, we hypothesized that purinergic signalling plays a part in this spinal stem cell niche. We combined immunohistochemistry, in vitro patch-clamp whole-cell recordings and Ca2+ imaging to explore the effects of purinergic agonists on ependymal progenitor-like cells in the neonatal (P1–P6) rat spinal cord. Prolonged focal application of a high concentration of ATP (1 mM) induced a slow inward current. Equimolar concentrations of BzATP generated larger currents that reversed close to 0 mV, had a linear current–voltage relationship and were blocked by Brilliant Blue G, suggesting the presence of functional P2X7 receptors. Immunohistochemistry showed that P2X7 receptors were expressed around the CC and the processes of RG. BzATP also generated Ca2+ waves in RG that were triggered by Ca2+ influx and propagated via Ca2+ release from internal stores through activation of ryanodine receptors. We speculate that the intracellular Ca2+ signalling triggered by P2X7 receptor activation may be an epigenetic mechanism to modulate the behaviour of progenitors in response to ATP released after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Göritz C, Frisén J (2012) Neural stem cells and neurogenesis in the adult. Cell Stem Cell 10:657–659. doi:10.1016/j.stem.2012.04.005

    Article  PubMed  Google Scholar 

  2. Marichal N, García G, Radmilovich M et al (2012) Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord. Stem Cells 30:2020–2031. doi:10.1002/stem.1175

    Article  PubMed  PubMed Central  Google Scholar 

  3. Meletis K, Barnabé-Heider F, Carlén M et al (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:1494–1507. doi:10.1371/journal.pbio.0060182

    Article  CAS  Google Scholar 

  4. Petit A, Sanders AD, Kennedy TE et al (2011) Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 6, e24538. doi:10.1371/journal.pone.0024538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marichal N, Garcia G, Radmilovich M et al (2009) Enigmatic central canal contacting cells: immature neurons in “standby mode”? J Neurosci 29:10010–10024. doi:10.1523/JNEUROSCI.6183-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barnabé-Heider F, Göritz C, Sabelström H et al (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482. doi:10.1016/j.stem.2010.07.014

    Article  PubMed  Google Scholar 

  7. Sabelström H, Stenudd M, Réu P et al (2013) Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342:637–640. doi:10.1126/science.1242576

    Article  PubMed  Google Scholar 

  8. Weissman TA, Riquelme PA, Ivic L et al (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    Article  CAS  PubMed  Google Scholar 

  9. Zimmermann H (2006) Nucleotide signalling in nervous system development. Pflugers Arch 452:573–588

    Article  CAS  PubMed  Google Scholar 

  10. Di Virgilio F, Boeynaems JM, Robson SC (2009) Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 9:507–513. doi:10.1016/j.coph.2009.06.02

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  CAS  PubMed  Google Scholar 

  12. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359. doi:10.1146/annurev.physiol.70.113006.100630

    Article  CAS  PubMed  Google Scholar 

  13. Abbracchio MP, Burnstock G, Verkhratsky A et al (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29. doi:10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Arcuino G, Takano T et al (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827

    Article  CAS  PubMed  Google Scholar 

  15. Peng W, Cotrina ML, Han X et al (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106:12489–12493. doi:10.1073/pnas.0902531106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barry PH, Diamond JM (1970) Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties in membranes. J Membr Biol 3:93–122. doi:10.1007/BF01868010

    Article  CAS  PubMed  Google Scholar 

  17. Stoeckel ME, Uhl-Bronner S, Hugel S et al (2003) Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J Comp Neurol 457:159–174

    Article  PubMed  Google Scholar 

  18. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  PubMed  Google Scholar 

  19. Hamilton LK, Truong MK, Bednarczyk MR et al (2009) Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164:1044–1056. doi:10.1016/j.neuroscience.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  20. Bianchi BR, Lynch KJ, Touma E et al (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376:127–138

    Article  CAS  PubMed  Google Scholar 

  21. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–80

    Article  CAS  PubMed  Google Scholar 

  22. Anderson CM, Nedergaard M (2006) Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 29:257–262

    Article  CAS  PubMed  Google Scholar 

  23. Jiang LH, Baldwin JM, Roger S et al (2013) Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms. Front Pharmacol 4:55. doi:10.3389/fphar.2013.00055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans RJ, Lewis C, Buell G et al (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2X purinoceptors). Mol Pharmacol 48:178–183

    CAS  PubMed  Google Scholar 

  25. Jiang LH, Mackenzie AB, North RA et al (2000) Brilliant blue G selectively blocks ATP-gated rat P2X7 receptors. Mol Pharmacol 58:82–88

    CAS  PubMed  Google Scholar 

  26. Yu Y, Ugawa S, Ueda T et al (2008) Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res 1194:45–55. doi:10.1016/j.brainres.2007.11.064

    Article  CAS  PubMed  Google Scholar 

  27. Genzen JR, Platel JC, Rubio ME et al (2009) Ependymal cells along the lateral ventricle express functional P2X(7) receptors. Purinergic Signal 5:299–307. doi:10.1007/s11302-009-9143-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cornell-Bell AH, Finkbeiner SM, Cooper MS et al (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signalling. Science 247:470–473

    Article  CAS  PubMed  Google Scholar 

  29. Clapham DE (1995) Calcium signalling. Cell 80:259–268

    Article  CAS  PubMed  Google Scholar 

  30. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  31. Iino M (2010) Spatiotemporal dynamics of Ca2+ signalling and its physiological roles. Proc Jpn Acad Ser B Phys Biol Sci 86:244–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franke H, Krügel U, Illes P (2006) P2 receptors and neuronal injury. Pflugers Arch 452:622–644

    Article  CAS  PubMed  Google Scholar 

  33. Glaser T, Resende RR, Ulrich H (2013) Implications of purinergic receptor-mediated intracellular calcium transients in neural differentiation. Cell Commun Signal 11:12. doi:10.1186/1478-811X-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miras-Portugal MT, Gomez-Villafuertes R, Gualix J, Diaz-Hernandez JI, Artalejo AR, Ortega F, Delicado EG, Perez-Sen R (2015) Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology. doi:10.1016/j.neuropharm.2015.09.002

    PubMed  Google Scholar 

  35. Liu X, Hashimoto-Torii K, Torii M et al (2008) The role of ATP signalling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci U S A 105:11802–11807. doi:10.1073/pnas.0805180105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis—a polarized perspective. Curr Opin Neurobiol 21:23–35. doi:10.1016/j.conb.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  37. Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  CAS  PubMed  Google Scholar 

  38. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  39. Goto H, Inoko A, Inagaki M (2013) Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci 70:3893–3905. doi:10.1007/s00018-013-1302-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Corns LF, Atkinson L, Daniel J et al (2015) Cholinergic enhancement of cell proliferation in the postnatal neurogenic niche of the mammalian spinal cord. Stem Cells 33:2864–76. doi:10.1002/stem.2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gómez-Villafuertes R, Rodríguez-Jiménez FJ, Alastrue-Agudo A et al (2015) Purinergic receptors in spinal cord-derived ependymal stem/progenitor cells and its potential role in cell-based therapy for spinal cord injury. Cell Transplant 24:1493–509. doi:10.3727/096368914X682828

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants FCE 2369 and FCE 100411 from ANII to N.M., and grants FCE 103356 from ANII and R01NS048255 from the National Institute of Neurological Disorders and Stroke to R.E.R. N.M. was a recipient of an ANII fellowship. The antibody rat-401 developed by S. Hockfield was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl E. Russo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in this study involving animals were in accordance with the ethical standards of the local Committee for Animal Care and Research at the Instituto de Investigaciones Biológicas Clemente Estable. Every precaution was taken to minimize animal stress and the number of animals used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marichal, N., Fabbiani, G., Trujillo-Cenóz, O. et al. Purinergic signalling in a latent stem cell niche of the rat spinal cord. Purinergic Signalling 12, 331–341 (2016). https://doi.org/10.1007/s11302-016-9507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9507-6

Keywords

Navigation