Skip to main content
Log in

A major locus for resistance to Botryosphaeria dothidea in Prunus

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Species in the fungal family Botryosphaeriaceae are significant pathogens of peach. The climatic conditions in the Southeastern USA are conducive to the development of peach fungal gummosis (PFG) with an estimated yield reduction of up to 40% in severe cases. Genotypes with resistance to this PFG were identified in interspecific crosses and segregating backcross populations generated using Kansu peach (Prunus kansuensis Rehder), almond [Prunus dulcis (Mill.) D.A. Webb], and peach [Prunus persica (L.) Batsch]. Hybrids were evaluated for four consecutive years in field conditions. Data generated was validated in different environments using clonal replicates of the hybrids. The F1 and BC1F1 segregation population data suggest a dominant allele for PFG resistance originating from almond. Segregation and mapping analysis located the PFG resistance locus on a chimeric linkage groups 6–8 near the leaf color locus. The molecular markers identified will facilitate marker-assisted selection (MAS) and introgression of this resistance trait into commercial peach germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahimera N, Gisler S, Morgan DP, Michailides TJ (2004) Effects of single-drop impactions and natural and simulated rains on the dispersal of Botryosphaeria dothidea conidia. Phytopathology 94:1189–1197. https://doi.org/10.1094/PHYTO.2004.94.11.1189

    Article  PubMed  Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92. https://doi.org/10.1046/j.1439-0523.2002.00656.x

    Article  CAS  Google Scholar 

  • Beckman TG, Chaparro JX, Sherman WB (2012) “MP-29”, a clonal interspecific hybrid rootstock for peach. Hortscience 47:128–131

    Google Scholar 

  • Beckman TG, Pusey PL, Bertrand PF (2003) Impact of fungal gummosis on peach trees. Hortscience 38:1141–1143

    Google Scholar 

  • Beckman TG, Reilly CC (2005) Relative susceptibility of peach cultivars to fungal gummosis (Botryosphaeria dothidea). J Am Pomol Soc 59:111–116

    Google Scholar 

  • Beckman TG, Reilly CC, Pusey PL, Hotchkiss M (2011) Progress in the management of peach fungal gummosis (Botryosphaeria dothidea) in the southeastern US peach industry. J Am Pomol Soc 65:192–200

    Google Scholar 

  • Biggs A, Britton KO (1988) Presymptom histopathology of peach trees inoculated with Botryosphaeria obtusa and B. dothidea. 78:1109–1118

  • Blake MA (1937) Progress in peach breeding. Proced Am Soc Hortic Sci:49–53

  • Britton KO, Hendrix FF, Pusey PL et al (1990) Evaluating the reaction of peach cultivars to infection by three Botryosphaeria species. Hortscience 25:468–470

    Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/QTL: QTL mapping in experimental crosses. Bioinforma Appl NOTE 19:889–890. https://doi.org/10.1093/bioinformatics/btg112

    Article  CAS  Google Scholar 

  • Brown IIE, Britton K (1986) Botryosphaeria disease of apple and peach in the Southeastern United States. Plant Dis 70:480–484

    Article  Google Scholar 

  • Carrillo-Mendoza O, Sherman WB, Chaparro JX (2010) Development of a branching index for evaluation of peach seedlings using interspecific hybrids. Hortscience 45:852–856

    Google Scholar 

  • Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815. https://doi.org/10.1007/BF00221132

    Article  CAS  PubMed  Google Scholar 

  • Chavez DJ, Chaparro JX (2011) Identification of markers linked to seedlessness in Citrus kinokuni hort. ex Tanaka and its progeny using bulked segregation analysis. Hortscience 46:693–697

    CAS  Google Scholar 

  • Denman S, Crous PW, Taylor JE et al (2000) An overview of the taxonomic history of Botryosphaeria, and a re-evaluation of its anamorphs based on morphology and its rDNA phylogeny. Stud Mycol 45:129–140

    Google Scholar 

  • Dettori MT, Micali S, Giovinazzi J, Scalabrin S, Verde I, Cipriani G (2015) Mining microsatellites in the peach genome: development of new long-core SSR markers for genetic analyses in five Prunus species. Spring 4:337. https://doi.org/10.1186/s40064-015-1098-0

    Article  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896. https://doi.org/10.1073/pnas.0307937101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle J (1991) DNA protocols for plants. Mol Tech Taxon:283–293. https://doi.org/10.1007/978-3-642-83962-7_18

  • Fawcett HS, Burger OF (1911) A gum-inducing diplodia of peach and orange. Mycologia 3:151. https://doi.org/10.2307/3753305

    Article  Google Scholar 

  • Gradziel TM, Martinez-Gomez P, Dicenta F, Kester DE (2001) The utilization of related prunus species for almond variety improvement

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171(3):1305–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Jacobs KA, Rehner SA (1998) Comparison of cultural and morphological characters and its sequences in anamorphs of Botryosphaeria and related taxa. Mycologia 90:601. https://doi.org/10.2307/3761219

    Article  CAS  Google Scholar 

  • Jáuregui B, de Vicente MC, Messeguer R (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176

    Article  Google Scholar 

  • Joobeur T, Viruel M, de VM et al (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Overview featuremaps features properties overview. Theor Appl Genet (7):1034–1041

  • Kosambi DD (1944) The estimation of map distances from recombination. Ann Eugenics 12:172–175. https://doi.org/10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Lambert P, Pascal T (2011) Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira®”. Tree Genet Genomes 7:1057–1068. https://doi.org/10.1007/s11295-011-0394-2

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181. https://doi.org/10.1016/0888-7543(87)90010-3

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhu W, Fan YC, Ye JL, Li GH (2014) Effects of pre- and post-treatment with ethephon on gum formation of peach gummosis caused by Lasiodiplodia theobromae. Plant Pathol 63:1306–1315. https://doi.org/10.1111/ppa.12214

    Article  CAS  Google Scholar 

  • Okie WR, Pusey PL (1996) USDA peach breeding in Georgia: current status and breeding for resistance to Botryosphaeria. Acta Hortic:151–158. https://doi.org/10.17660/ActaHortic.1996.374.19

  • Phillips AJL, Crous PW, Alves A (2007) Diplodia seriata, the anamorph of Botryosphaeria obtusa. Fungal Divers 25:141–155

    Google Scholar 

  • Polashock JJ, Road LO, Kramer M et al (2006) Resistance of blueberry cultivars to Botryosphaeria stem blight and Phomopsis twig blight. Hortscience 41:1457–1461

    Google Scholar 

  • Punithalingam E (1976) Botryodiplodia theobromae. C Descr Pathog Fungi Bact 519:1–2

    Google Scholar 

  • Pusey P (1989) Influence of water stress on susceptibility of nonwounded peach bark to Botryosphaeria dothidea. Plant Dis 73:1000–1003

    Article  Google Scholar 

  • Pusey P, Bertrand P (1993) Seasonal infection of nonwounded peach bark by Botryosphaeria dothidea. Phytopathology 83:825–829

    Article  Google Scholar 

  • Pusey PL, Kitajima H, Wu Y (1995) “Fungal gummosis”

  • Reilly WD, Okie WR (1982) Distribution in the southeastern United States of peach tree fungal gummosis by Botryosphaeria dothidea. Plant Dis 66:158–161

    Article  Google Scholar 

  • Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ (2004) Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia 96:83–101. https://doi.org/10.2307/3761991

    Article  CAS  PubMed  Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106. https://doi.org/10.1016/j.fbr.2007.06.002

    Article  Google Scholar 

  • Wang F, Zhao L, Li G, Huang J, Hsiang T (2011) Identification and characterization of Botryosphaeria spp. causing gummosis of peach trees in Hubei Province, Central China. Plant Dis 95:1378–1384. https://doi.org/10.1094/pdis-12-10-0893

    Article  Google Scholar 

  • Weaver DJ (1974) A gummosis disease of peach trees caused by Botryosphaeria dothidea. Phytopathology 64:1429–1432. https://doi.org/10.1094/Phyto-64-1429

    Article  Google Scholar 

  • Weaver DJ (1979) Role of conidia of Botryosphaeria dothidea in the natural spread of peach tree gummosis. Phytopathology 69:330–340

    Article  Google Scholar 

  • Wright AF, Harmon PF (2010) Identification of species in the Botryosphaeriaceae family causing stem blight on southern highbush blueberry in Florida. Plant Dis 94:966–971. https://doi.org/10.1094/PDIS-94-8-0966

    Article  Google Scholar 

  • Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Japan Soc Hortic Sci 74(3):204–213

    Article  CAS  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mancero-Castillo.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Table 1S

(DOCX 116 kb)

Table 2S

(DOCX 64 kb)

Table 3S

(DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancero-Castillo, D., Beckman, T.G., Harmon, P.F. et al. A major locus for resistance to Botryosphaeria dothidea in Prunus. Tree Genetics & Genomes 14, 26 (2018). https://doi.org/10.1007/s11295-018-1241-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1241-5

Keywords

Navigation