Tree Genetics & Genomes

, 14:28 | Cite as

SSR-based molecular profiling of 237 persimmon (Diospyros kaki Thunb.) germplasms using an ASTRINGENCY-linked marker

  • Noriyuki Onoue
  • Shozo Kobayashi
  • Atsushi Kono
  • Akihiko Sato
Original Article
Part of the following topical collections:
  1. Germplasm Diversity


Pollination-constant non-astringent (PCNA) trait is desirable in persimmon production because it confers natural astringency loss in mature persimmon fruit. Expression of the PCNA trait requires six homozygous recessive PCNA (ast) alleles at the single ASTRINGENCY (AST) locus in hexaploid persimmon. When crossing non-PCNA accessions to breed PCNA offspring, knowledge of ast and non-PCNA (AST) allele dosage in the parental accessions is important, because more PCNA offspring can segregate from a non-PCNA parent with more ast and fewer AST alleles. Previously, we have demonstrated that a region linked to the AST locus has numerous fragment size polymorphisms with varying numbers of simple sequence repeats. Here, we reveal the polymorphisms in this region in a broad collection of persimmon germplasms. Among 237 accessions, we distinguished 21 AST- and 5 ast-linked fragments with different sizes. Based on the number of fragments detected per individual, we identified 21 non-PCNA accessions with three different ast alleles; by crossing these with a PCNA parent, we obtain PCNA offspring under autohexaploid inheritance. Furthermore, AST and ast allelic combination patterns in hexaploid persimmon were shown to be applicable to cultivar identification of non-PCNA accessions. We directly sequenced ast-linked fragments from 48 accessions with one-size peak of ast-linked fragment and found two distinctive groups of fragments based on single nucleotide polymorphisms. This result suggests that a bottleneck event occurred during ast allele development. We conclude that our fragment size profile can be used to accelerate PCNA breeding that uses non-PCNA parents and to study ast allele accumulation in persimmon.


Astringency Breeding Fruit tree Genetic resources PCNA Polyploidy 



We thank Tamami Nakasumi (NIFTS) for technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

The data obtained by the direct sequence analysis of the 45 accessions with only one-size peak of the ast allele-linked fragment was submitted to DNA Data Bank of Japan (DDBJ). The full list of the data is described in Supplemental Table S3.

Supplementary material

11295_2018_1239_MOESM1_ESM.xlsx (64 kb)
Supplemental Table S1 (XLSX 64 kb)
11295_2018_1239_MOESM2_ESM.xlsx (93 kb)
Supplemental Table S2 (XLSX 92 kb)
11295_2018_1239_MOESM3_ESM.xlsx (47 kb)
Supplemental Table S3 (XLSX 47 kb)


  1. Agricultural Research Station (1912) Investigation on persimmon cultivars. Bull Agric Res Stn (extra) 28:1–46 (in Japanese)Google Scholar
  2. Akagi T, Kanzaki S, Gao M, Tao R, Parfitt DE, Yonemori K (2009) Quantitative real-time PCR to determine allele number for the astringency locus by analysis of a linked marker in Diospyros kaki Thunb. Tree Genet Genomes 5:483–492. CrossRefGoogle Scholar
  3. Akagi T, Takeda Y, Yonemori K, Ikegami A, Kono A, Yamada M, Kanzaki S (2010) Quantitative genotyping for the astringency locus in hexaploid persimmon cultivars using quantitative real-time PCR. J Am Soc Hortic Sci 135:59–66Google Scholar
  4. Akagi T, Tao R, Tsujimoto T, Kono A, Yonemori K (2012) Fine genotyping of a highly polymorphic ASTRINGENCY-linked locus reveals variable hexasomic inheritance in persimmon (Diospyros kaki Thunb.) cultivars. Tree Genet Genomes 8:195–204. CrossRefGoogle Scholar
  5. Allard RW (1960) Principles of plant breeding. Wiley, New York and London, pp 390–399Google Scholar
  6. Badenes M, Garcés A, Romero C, Romero M, Clavé J, Rovira M, Llácer G (2003) Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers. Genet Resour Crop Evol 50:579–585. CrossRefGoogle Scholar
  7. Bellini E, Giordani E (2005) Germplasm and breeding of persimmon in Europe. Acta Hortic 685:65–75. CrossRefGoogle Scholar
  8. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  9. Bouquet A (1986) Introduction dans l’espèce Vitis vinifera L. d’un caractère de résistance à l’oidium (Uncinula necator Schw. Burr.) issu de l’espèce Muscadinia rotundifolia (Michx.) Small. Vignevini 12(suppl):141–146 (in French)Google Scholar
  10. Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. BioTechniques 20:1004–1010PubMedGoogle Scholar
  11. Cho SK, Cho TH (1965) Studies on the local varieties of persimmon in Korea. Res Rep RDA 8:147–190 (in Korean with English summary)Google Scholar
  12. Du X, Zhang Q, Luo Z (2009) Development of retrotransposon primers and their utilization for germplasm identification in Diospyros spp. (Ebenaceae). Tree Genet Genomes 5:235–245. CrossRefGoogle Scholar
  13. Fruit Tree Experiment Station of Hiroshima Prefecture (1979) Showa 53-nendo Shubyo-tokusei-bunrui-chosa-hokokusho (Kaki). Fruit Tree Experiment Station of Hiroshima Prefecture, Akitsu, HiroshimaGoogle Scholar
  14. Guo DL, Luo ZR (2011) Genetic relationships of the Japanese persimmon Diospyros kaki (Ebenaceae) and related species revealed by SSR analysis. Genet Mol Res 10:1060–1068. CrossRefPubMedGoogle Scholar
  15. Ikeda I, Yamada M, Kurihara A, Nishida T (1985) Inheritance of astringency in Japanese persimmon. J Jpn Soc Hortic Sci 54:39–45. (in Japanese with English summary)CrossRefGoogle Scholar
  16. Ikegami A, Eguchi S, Yonemori K, Yamada M, Sato A, Mitani N, Kitajima A (2006) Segregations of astringent progenies in the F1 populations derived from crosses between a Chinese pollination-constant nonastringent (PCNA) ‘Luo Tian Tian Shi’, and Japanese PCNA and pollination-constant astringent (PCA) cultivars of Japanese origin. Hortscience 41:561–563Google Scholar
  17. Ikegami A, Yonemori K, Sugiura A, Sato A, Yamada M (2004) Segregation of astringency in F1 progenies derived from crosses between pollination-constant, nonastringent persimmon cultivars. Hortscience 39:371–374Google Scholar
  18. Kajiura M (1946) Persimmon cultivars and their improvement 2. Breed Hortic 1:175–182 (in Japanese)Google Scholar
  19. Kanzaki S, Akagi T, Masuko T, Kimura M, Yamada M, Sato A, Mitani N, Utsunomiya N, Yonemori K (2010) SCAR markers for practical application of marker-assisted selection in persimmon (Diospyros kaki Thunb.) breeding. J Jpn Soc Hortic Sci 79:150–155. CrossRefGoogle Scholar
  20. Kanzaki S, Sato A, Yamada M, Utsunomiya N, Kitajima A, Ikegami A, Yonemori K (2008) RFLP markers for the selection of pollination-constant and non-astringent (PCNA)-type persimmon and examination of the inheritance mode of the markers. J Jpn Soc Hortic Sci 77:28–32. CrossRefGoogle Scholar
  21. Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A (2000) Analysis of the genetic relationships among pollination-constant and non-astringent (PCNA) cultivars of persimmon (Diospyros kaki Thunb.) from Japan and China using amplified fragment length polymorphism (AFLP). J Jpn Soc Hortic Sci 69:665–670. CrossRefGoogle Scholar
  22. Kobayashi S, Ishimaru M, Ding CK, Yakushiji H, Goto N (2001) Comparison of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci 160:543–550. CrossRefPubMedGoogle Scholar
  23. Kono A, Kobayashi S, Onoue N, Sato A (2016) Characterization of a highly polymorphic region closely linked to the AST locus and its potential use in breeding of hexaploid persimmon (Diospyros kaki Thunb.) Mol Breed 36:56. CrossRefGoogle Scholar
  24. Kono A, Onoue N, Sato A (2018) Extracting DNA from dormant buds and cambium tissue of persimmon. Acta Hortic. (in press)Google Scholar
  25. Luo ZR, Yonemori K, Sugiura A (1995) Evaluation of RAPD analysis for cultivar identification of persimmons. J Jpn Soc Hortic Sci 64:535–541. (in Japanese with English summary)CrossRefGoogle Scholar
  26. Maki S, Oyama K, Kurahashi T, Nakahira T, Kawabata T, Yamada T (2001) RFLP analysis for cultivar identification of persimmons. Sci Hortic 91:407–412. CrossRefGoogle Scholar
  27. Mitani N, Kono A, Yamada M, Sato A, Kobayashi S, Ban Y, Ueno T, Shiraishi M, Kanzaki S, Tsujimoto T, Yonemori K (2014a) Practical marker-assisted selection using two SCAR markers for fruit astringency type in crosses of ‘Taiten’ × PCNA cultivars in persimmon breeding. Sci Hortic 170:219–223. CrossRefGoogle Scholar
  28. Mitani N, Kono A, Yamada M, Sato A, Kobayashi S, Ban Y, Ueno T, Shiraishi M, Kanzaki S, Tsujimoto T, Yonemori K (2014b) Application of marker-assisted selection in persimmon breeding of PCNA offspring using SCAR markers among the population from the cross between non-PCNA ‘Taigetsu’ and PCNA ‘Kanshu’. Hortscience 49:1132–1135Google Scholar
  29. Naval MM, Zuriaga E, Pecchioli S, Llácer G, Giordani E, Badenes ML (2010) Analysis of genetic diversity among persimmon cultivars using microsatellite markers. Tree Genet Genomes 6:677–687. CrossRefGoogle Scholar
  30. Parfitt DE, Yonemori K, Honsho C, Nozaka M, Kanzaki S, Sato A, Yamada M (2015) Relationships among Asian persimmon cultivars, astringent and non-astringent types. Tree Genet Genomes 11:24. CrossRefGoogle Scholar
  31. Pasqualotto AC, Denning DW, Anderson MJ (2007) A cautionary tale: lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. J Clin Microbiol 45:522–528. CrossRefPubMedGoogle Scholar
  32. Ruengphayak S, Chaichumpoo E, Phromphan S, Kamolsukyunyong W, Sukhaket W, Phuvanartnarubal E, Korinsak S, Korinsak S, Vanavichit A (2015) Pseudo-backcrossing design for rapidly pyramiding multiple traits into a preferential rice variety. Rice 8:7. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sato A, Yamada M (2016) Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection. Breed Sci 66:60–68. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. CrossRefPubMedGoogle Scholar
  35. Soriano JM, Pecchioli S, Romero C, Vilanova S, Llácer G, Giordani E, Badenes ML (2006) Development of microsatellite markers in polyploid persimmon (Diospyros kaki Lf) from an enriched genomic library. Mol Ecol Notes 6:368–370. CrossRefGoogle Scholar
  36. Sugiura A, Yonemori K, Tetsumura T, Tao R, Yamada M, Yamane H (1990) Identification of pollination-constant and non-astringent type cultivars of Japanese persimmon by leaf isozyme analysis. J Jpn Soc Hortic Sci (supplement 1) 59:44–45 (in Japanese)Google Scholar
  37. Tamura M, Tao R, Yonemori K, Utsunomiya N, Sugiura A (1998) Ploidy level and genome size of several Diospyros species. J Jpn Soc Hortic Sci 67:306–312. CrossRefGoogle Scholar
  38. Tao R, Sugiura A (1987) Cultivar identification of Japanese persimmon by leaf isozymes. Hortscience 22:932–935Google Scholar
  39. Tao R, Tetsumura T, Sugiura A (1989) Use of leaf isozymes to discriminate among Japanese persimmon (Diospyros kaki L.) cultivars. Mem Coll Agric Kyoto Univ 135:31–42Google Scholar
  40. Wang R (1982) The origin of ‘Luotian-Tianshi’. Chinese Fruit Tree 2:16–19 (in Chinese)Google Scholar
  41. Wang R, Yong Y, Gaochao L (1997) Chinese persimmon germplasm resources. Acta Hortic 436:43–50. Google Scholar
  42. Yamada M (1993) Persimmon breeding in Japan. Jpn Agric Res Q 27:33–37Google Scholar
  43. Yamada M (1996a) Aizu Mishirazu. In: Kozaki I, Ueno I, Tsuchiya S, Kajiura I (eds) Shinpen Genshoku Kudamono Zusetsu, 1st edn. Yokendo, Tokyo, pp 204–205 (in Japanese with English summary)Google Scholar
  44. Yamada M (1996b) Ichida Gaki. In: Kozaki I, Ueno I, Tsuchiya S, Kajiura I (eds) Shinpen Genshoku Kudamono Zusetsu, 1st edn. Yokendo, Tokyo, pp 196–197 (in Japanese with English summary)Google Scholar
  45. Yamada M (1996c) Saijo. In: Kozaki I, Ueno I, Tsuchiya S, Kajiura I (eds) Shinpen Genshoku Kudamono Zusetsu, 1st edn. Yokendo, Tokyo, pp 192–193 (in Japanese with English summary)Google Scholar
  46. Yamada M (1996d) Zenjimaru. In: Kozaki I, Ueno I, Tsuchiya S, Kajiura I (eds) Shinpen Genshoku Kudamono Zusetsu, 1st edn. Yokendo, Tokyo, pp 186–187 (in Japanese with English summary)Google Scholar
  47. Yamada M, Giordani E, Yonemori K (2012) Persimmon. In: Badenes ML, Byrne (eds) Fruit breeding. Springer, Berlin, pp 663–693CrossRefGoogle Scholar
  48. Yamada M, Yamane H, Ukai Y (1994) Genetic analysis of Japanese persimmon fruit weight. J Am Soc Hortic Sci 119:1298–1302Google Scholar
  49. Yamagishi M, Matsumoto S, Nakatsuka A, Itamura H (2005) Identification of persimmon (Diospyros kaki) cultivars and phenetic relationships between Diospyros species by more effective RAPD analysis. Sci Hortic 105:283–290. CrossRefGoogle Scholar
  50. Yonemori K, Honsho C, Kitajima A, Aradhya M, Giordani E, Bellini E, Parfitt DE (2008) Relationship of European persimmon (Diospyros kaki Thunb.) cultivars to Asian cultivars, characterized using AFLPs. Genet Resour Crop Evol 55:81–89. CrossRefGoogle Scholar
  51. Yonemori K, Ikegami A, Kitajima A, Luo S, Kanzaki A, Sato A, Yamada M, Yang Y, Wang R (2005) Existence of several pollination constant non-astringent type persimmons in China. Acta Hortic 685:77–83. CrossRefGoogle Scholar
  52. Yonemori K, Sugiura A, Yamada M (2000) Persimmon genetics and breeding. In: Janick J (ed) Plant Breed Rev, vol 19. John Wiley & Sons, Inc, New York, pp 191–225. Google Scholar
  53. Zhuang DH, Kitajima A, Ishida M, Sobajima Y (1990) Chromosome numbers of Diospyros kaki cultivars. J Jpn Soc Hortic Sci 59:289–297. (in Japanese with English summary)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Grape and Persimmon Research, NARO Institute of Fruit Tree and Tea Science (NIFTS)National Agriculture and Food Research Organization (NARO)HiroshimaJapan

Personalised recommendations