Skip to main content
Log in

Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Ichang papeda (Citrus ichangensis), a wild and endemic perennial plant in Rutaceae, is characterized by the existence of wild and natural populations in southwestern and middle-west China. We analyzed a total of 231 individuals across 16 natural populations using chloroplast SSR markers, nuclear SSR markers, and single-copy nuclear genes. Standard population genetic analyses as well as Bayesian and maximum likelihood models were used to clarify the genetic diversity, population differentiation, barriers to gene flow, bottleneck events, isolation by distance, history migration, demographic history among populations, and phylogeny evolution. The chloroplast and nuclear genome analyses revealed a low level of genetic diversity in C. ichangensis. Clear signals of recent bottlenecks and strong patterns of isolation by distance were detected among different subpopulations, indicating a low extent of historical gene flow for this species and that genetic drift would occur after population differentiation. Bayesian clustering analyses revealed a clear pattern of genetic structure, with one cluster spanning the potential refugia in Wuling Mountains and Ta-pa Mountains, and other two clusters covering a more limited distribution range. The demographic history also supported the scenario that two isolated clusters originated in parallel from the genetic diversity center. Taxonomically, Ichang papeda may be a member of subgenus Citrus. Owing to the complicated topography, the mountainous regions and the Yangtze River have provided long-term stable habitats for C. ichangensis and acted as main barriers for its expansion, which might facilitate the process of speciation. Statistical population models and genetic data indicated strong genetic structure in C. ichangensis, which might result from the restricted gene flow, genetic drift, and population bottlenecks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antao T, Lopes A, Lopes RJ, Bejapereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F st -outlier method. BMC Bioinformatics 9:289–298

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Birky C, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627

    PubMed  Google Scholar 

  • Cheng YJ, Guo WW, Yi HL, Pang XM, Deng XX (2003) An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep 21:177–178

    Article  Google Scholar 

  • Cheng YJ, de Vicente MC, Meng HJ, Guo WW, Tao NG, Deng XX (2005) A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiol 25:343–350

    Article  Google Scholar 

  • Chinese State Report on Biodiversity Editorial Committee (1998) Chinese state report on biodiversity. Chinese Environmental Science Press, Beijing

    Google Scholar 

  • Cornille A, Giraud T, Bellard C, Tellier A, Le Cam B, Smulders MJ, Kleinschmit J, Roldan-Ruiz I, Gladieux P (2013) Postglacial recolonization history of the European crabapple (Malus sylvestris Mill.), a wild contributor to the domesticated apple. Mol Ecol 22:2249–2263

    Article  CAS  PubMed  Google Scholar 

  • Cornuet JM, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics 11:401

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  CAS  PubMed  Google Scholar 

  • De Andres MT, Benito A, Perez-Rivera G, Ocete R, Lopez MA, Gaforio L, Munoz G, Cabello F, Martinez Zapater JM, Arroyo-Garcia R (2012) Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol 21:800–816

    Article  CAS  PubMed  Google Scholar 

  • Delplancke M, Alvarez N, Benoit L, Espíndola A, Ijoly H, Neuenschwander S, Arrigo N (2013) Evolutionary history of almond tree domestication in the Mediterranean basin. Mol Ecol 22:1092–1104

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao LM, Moller M, Zhang XM, Hollingsworth ML, Liu J, Mill RR, Gibby M, Li DZ (2007) High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Mol Ecol 16:4684–4698

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2015) Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genet Genomes 11:1–15

    Article  Google Scholar 

  • Gong GZ, Hong QB, Peng ZC, Jiang D, Xiang SQ (2008) Genetic diversity of Poncirus and its phylogenetic relationships with relatives as revealed by nuclear and chloroplast SSR. Acta Horticulturae Sinica 35:1742–1750. (in Chinese with Engnish abstract

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogen Evol 54:291–301

    Article  CAS  Google Scholar 

  • Hoskin CJ, Higgie M, Mcdonald KR, Moritz C (2005) Reinforcement drives rapid allopatric speciation. Nature 437:1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo-Correa JP, Aguirre-Planter E, Khasa DP, Eguiarte LE, Pinero D, Furnier GR, Bousquet J (2008) Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern Mexico and Guatemala. Mol Ecol 17:2476–2490

    Article  CAS  PubMed  Google Scholar 

  • Jordi LP, Zhang FM, Sun HQ, Ying TS, Ge S (2011) Centres of plant endemism in China: places for survival or for speciation? J Biogeogr 38:1267–1280

    Article  Google Scholar 

  • Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770

    Article  CAS  PubMed  Google Scholar 

  • Lascoux M, Palmé AE, Cheddadi R, Latta RG (2004) Impact of Ice Ages on the genetic structure of trees and shrubs. Philos Trans R Soc Lond Ser B Biol Sci 359:197–207

    Article  Google Scholar 

  • Liang M, Yang XM, Li H, Su SY, Yi HL, Chai LJ, Deng XX (2015) De novo transcriptome assembly of pummelo and molecular marker development. PLoS One 10:e0120615

    Article  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Kang M, Tian H, Huang H (2013) A range wide geographic pattern of genetic diversity and population structure of Castanea mollissima populations inferred from nuclear and chloroplast microsatellites. Tree Genet Genomes 9:975–987

    Article  Google Scholar 

  • López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S (2011) Centres of plant endemism in China: places for survival or for speciation? J Biogeogr 38:1267–1280

    Article  Google Scholar 

  • Mamidi S, Rossi M, Moghaddam SM, Annam D, Lee R, Papa R, McClean PE (2013) Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L. Heredity 110:267–276

    Article  CAS  PubMed  Google Scholar 

  • Mona S, Ray N, Arenas M, Excoffier L (2013) Genetic consequences of habitat fragmentation during a range expansion. Heredity 112:291–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei M, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, Malfa SL, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L (2013) Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol 22:5983–5999

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penjor T, Yamamoto M, Uehara M, Ide M, Matsumoto N, Matsumoto R, Nagano Y (2013) Phylogenetic relationships of citrus and its relatives based on matK gene sequences. PLoS ONE 8:e62574

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a program for detecting recent effective population size reductions from allele data frequencies. J Hered 90:502–503

    Article  Google Scholar 

  • Pons O, Petit R (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prunier R, Holsinger KE (2010) Was it an explosion? Using population genetics to explore the dynamics of a recent radiation within Protea (Proteaceae L.). Mol Ecol 19:3968–3980

    Article  PubMed  Google Scholar 

  • Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Mol Phylogen Evol 59:225–244

    Article  Google Scholar 

  • Ramadugu C, Keremane ML, Hu X, Karp D, Federici CT, Kahn T, Roose ML, Lee RF (2015) Genetic analysis of citron (Citrus medica L.) using simple sequence repeats and single nucleotide polymorphisms. Sci Hortic 195:124–137

    Article  CAS  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Chen XY, Zhang X, Li YY, Fu CX, Qiu YX (2005) Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia. Heredity 94:396–401

    Article  CAS  PubMed  Google Scholar 

  • Sobel JM, Chen GF, Watt LR, Schemske DW (2010) The biology of speciation. Evolution 64:295–315

    Article  PubMed  Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of Citrus and its wild relatives In: Reuther W, Webber HJ, Batchelor LD, editors. The Citrus Industry: University of California, Berkeley 1:190–430

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T (1954) Species problem in Citrus (Revisio aurantiacearum IX). Japanese Society for Promotion of Science, Tokyo, Japan, pp 1–157

  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180

    Article  Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Article  Google Scholar 

  • Xu Q, Chen LL, Ruan XA, Chen DJ, Zhu AD, Chen CL, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen JJ, Gao S, Xing F, Lan H, Chang JW, Ge XH, Lei Y, Hu Q, Miao Y, Wang L, Xiao SX, Biswas MK, Zeng WF, Guo F, Cao HB, Yang XM, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan YJ (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yang XM, Li H, Liang M, Xu Q, Chai LJ, Deng XX (2015) Genetic diversity and phylogenetic relationships of citron (Citrus medica L.) and its relatives in southwest China. Tree Genet Genomes 11:1–13

    Article  Google Scholar 

  • Yang AH, Dick CW, Yao XH, Huang HW (2016) Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense. Scientific Reports 6:25632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZY, Zheng XM, Ge S (2007) Population genetic structure of Vitex negundo (Verbenaceae) in Three-Gorge Area of the Yangtze River: the riverine barrier to seed dispersal in plants. Biochem Syst Ecol 35:506–516

    Article  CAS  Google Scholar 

  • Zong Y, Sun P, Liu J, Yue XY, Niu QF, Teng YW (2014) Chloroplast DNA-based genetic diversity and phylogeography of Pyrus betulaefolia (Rosaceae) in Northern China. Tree Genet Genomes 10:739–749

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (31521092, 31630065) and the Ministry of Agriculture (CARS-27). We are grateful to Mr. Zuoxiong Liu from the College of Foreign Languages, Huazhong Agriculture University, China, for discussion and modification of the English of this manuscript. We also acknowledge members in our lab for their collaboration in the field investigation and sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuxin Deng.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by W.-W. Guo

Electronic supplementary material

Supplementary Data Figure S1

F st values of 85 microsatellite loci vs heterozygosity in populations of C. ichangensis. Red area represents positive selection, gray area represents neutral selection, and yellow area represents balancing selection. Ten loci were subjected to balancing selection and eleven loci were subjected to positive selection. The corresponding primer information could be found in Supplementary Data Table S3. (GIF 310 kb)

High Resolution Image (TIFF 2060 kb)

Supplementary Data Figure S2

Fixation indices obtained with the SAMOVA program as a function of the user-defined number K of groups of populations based on cpSSR datasets. F st, differentiation among populations within a group; F ct, differentiation among groups of populations; F sc, differentiation among populations from different groups. (GIF 274 kb)

High Resolution Image (TIFF 70 kb)

Supplementary Data Figure S3

Plot of Delta K (filled circles, solid line) calculated as the mean of the second-order rate of change in likelihood of K divided by the standard deviation of the likelihood of K, m(|L”(K)|) / sd (L(K)) based on the nSSR datasets. (GIF 29 kb)

High Resolution Image (TIFF 490 kb)

Supplementary Data Figure S4

Isolation by distance analysis using nSSR datasets. F st / (1-F st) is plotted against the natural logarithm of the geographical distances (kilometers) between populations. We obtained Pearson correlation coefficients (r) and P-values (P) for test. (GIF 56 kb)

High Resolution Image (TIFF 3251 kb)

Supplementary Data Figure S5

Network showing the genetic relationships among the observed nuclear DNA haplotypes of C. ichangensis. Each haplotype is represented by a circle, the area of which is proportional to the number of individuals with this haplotype. The length of lines is proportional to mutational change between haplotypes. Missing haplotypes are represented by small unfiled circles. Haplotypes belonging to three different clusters are indicated by different colors (red, cluster I; blue, cluster II; green, cluster III). (GIF 87 kb)

High Resolution Image (TIFF 1930 kb)

Supplementary Data Figure S6

Principal Component Analysis (PCA) in the space of the summary statistics performed on the selected scenario C. The observations are the simulated datasets and the variables are the summary statistics. The yellow dot corresponds to the real dataset of C. ichangensis. Each large blue dot corresponds to a dataset simulated with parameters drawn from the posterior distributions. Each small blue dot corresponds to a dataset simulated with parameters drawn from the prior distributions. 10,000 datasets are randomly shown here for each of the prior and posterior distributions. (GIF 60 kb)

High Resolution Image (TIFF 1169 kb)

Supplementary Data Table S1

(DOCX 19 kb)

Supplementary Data Table S2

(DOCX 41 kb)

Supplementary Data Table S3

(DOCX 27 kb)

Supplementary Data Table S4

(DOCX 17 kb)

Supplementary Data Table S5

(DOCX 16 kb)

Supplementary Data Table S6

(DOCX 15 kb)

Data archiving statement

All nuclear gene sequences will be submitted to GenBank, and accession numbers will be provided once available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, H., Yu, H. et al. Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae). Tree Genetics & Genomes 13, 29 (2017). https://doi.org/10.1007/s11295-017-1113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1113-4

Keywords

Navigation