Skip to main content

Advertisement

Log in

Chloroplast DNA-based genetic diversity and phylogeography of Pyrus betulaefolia (Rosaceae) in Northern China

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Pyrus betulaefolia Bunge, considered as an intermediate between oriental and occidental pear groups, is one of the most important wild pear species. The number of its populations is decreasing because of habitat destruction, fragmentation, and continuous exploitation, so protection and conservation measures are urgently needed. Assessment of its genetic diversity and phylogeography are imperative for its efficient conservation. Two chloroplast DNA intergenic fragments were used to detect genetic diversity and phylogeography of 320 individuals from 18 wild P. betulaefolia populations. Haplotype variation, genetic differentiation, and historical events of the populations were estimated. The results showed that P. betulaefolia populations sampled in northern China contained a high level of genetic diversity (H T = 0.826). A significant isolation-by-distance value (r = 0.587, P < 0.001, 1,000 permutations) among all 18 populations indicated a correlation between genetic divergence and geographic distance. Four population groups were identified in a neighbor-joining tree based on the genetic distance. Analyses of molecular variation showed that the genetic variation mainly existed among population groups, representing 64.61 % of the total variation. Phylogeographic analyses indicated that the populations of P. betulaefolia experienced a scenario of rapid range expansion, which probably occurred between 608,000 and 204,580 years ago. Meanwhile, both the restricted gene flow with isolation by distance and allopatric fragmentation were crucial processes responsible for shaping the genetic patterns of P. betulaefolia. The occurrence of specific haplotypes might be ascribed to an ancestral introgression or joint retention of an ancestral polymorphism with other Pyrus species at the northern edge of the distribution of P. betulaefolia. Three populations displaying a high level of haplotype diversity and unique haplotypes were assumed to be relict populations of Quaternary glaciation and should have conservation priority. Three additional large populations should also be preferentially protected by building natural preservation zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai WN, Liao WJ, Zhang DY (2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol 188:892–901

    Article  PubMed  Google Scholar 

  • Bao L, Chen K, Zhang D, Li X, Teng Y (2008) An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers. Sci Hortic-Amst 116:374–380

    Article  CAS  Google Scholar 

  • Bassil N, Postman JD (2010) Identification of European and Asian pears using EST-SSRs from Pyrus. Genet Resour Crop Ev 57:357–370

    Article  Google Scholar 

  • Caicedo AL, Schaal BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol 13:1871–1882

    Article  CAS  PubMed  Google Scholar 

  • Calvino CI, Martinez SG, Downie SR (2008) The evolutionary history of Eryngium (Apiaceae, Saniculoideae): rapid radiations, long distance dispersals, and hybridizations. Mol Phylogenet Evol 46:1129–1150

    Article  PubMed  Google Scholar 

  • Campbell CS, Evans RC, Morgan DR, Dickinson TA, Arsenault MP (2007) Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Plant Syst Evol 266:119–145

    Article  CAS  Google Scholar 

  • Cao YF, Tian LM, Gao Y, Liu FZ (2012) Genetic diversity of cultivated and wild Ussurian pear (Pyrus ussuriensis Maxim.) in China evaluated with M13-tailed SSR markers. Genet Resour Crop Ev 59:9–17

    Article  CAS  Google Scholar 

  • Challice JS, Westwood MN (1973) Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc 67:121–148

    Article  Google Scholar 

  • Chen K, Abbott RJ, Milne RI, Tian XM, Liu J (2008) Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China. Mol Ecol 17:4276–4288

    Article  CAS  PubMed  Google Scholar 

  • Clegg MT, Brandon SG Jr, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci U S A 91:6795–6801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duan J, Fu B, Wang B, Yang J, Pang L, Kang H, Li Y (2008) Wild fruit germplasm resources in Shanxi Province (in Chinese). J Fruit Sci 25:1–5

    Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fernie AR, Tadmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9:196–202

    Article  PubMed  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173

    Article  CAS  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Harrison SP, Yu G, Takahara H, Prentice IC (2001) Diversity of temperate plants in east Asia. Nature 413:129–130

    Article  CAS  PubMed  Google Scholar 

  • Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG (2004) Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol Ecol 13:3437–3452

    Article  CAS  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos T Roy Soc B 359:183–195

    Article  CAS  Google Scholar 

  • Heywood V, Casas A, Ford-Lloyd B, Kell S, Maxted N (2007) Conservation and sustainable use of crop wild relatives. Agr Ecosyst Environ 121:245–255

    Article  Google Scholar 

  • Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD (2010) Phylogeography's past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol 54:291–301

    Article  CAS  PubMed  Google Scholar 

  • Honnay O, Jacquemyn H, Aerts R (2012) Crop wild relatives: more common ground for breeders and ecologists. Front Ecol Environ 10:121

    Article  Google Scholar 

  • Iketani H, Manabe T, Matsuta N, Akihama T, Hayashi T (1998) Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Genet Resour Crop Ev 45:533–539

    Article  Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:159–173

    Article  Google Scholar 

  • Katayama H, Adachi S, Yamamoto T, Uematsu C (2007) A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genet Resour Crop Ev 54:1573–1585

    Google Scholar 

  • Katayama H, Tachibana M, Iketani H, Zhang S, Uematsu C (2012) Phylogenetic utility of structural alterations found in the chloroplast genome of pear: hypervariable regions in a highly conserved genome. Tree Genet Genomes 8:313–326

    Google Scholar 

  • Kato S, Imai A, Rie N, Mukai Y (2013) Population genetic structure in a threatened tree, Pyrus calleryana var. dimorphophylla revealed by chloroplast DNA and nuclear SSR locus polymorphisms. Conserv Genet 14:983–996

  • Lenne JM, Wood D (1991) Plant diseases and the use of wild germplasm. Annu Rev Phytopathol 29:35–63

    Article  Google Scholar 

  • Li E, Yi S, Qiu Y, Guo J, Comes HP, Fu C (2008) Phylogeography of two East Asian species in Croomia (Stemonaceae) inferred from chloroplast DNA and ISSR fingerprinting variation. Mol Phylogenet Evol 49:702–714

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Linder HP (2008) Plant species radiations: where, when, why? Philos T Roy Soc B 363:3097–3105

    Article  Google Scholar 

  • Liu J, Sun P, Zheng X, Potter D, Li K, Hu C, Teng Y (2013) Genetic structure and phylogeography of Pyrus pashia L. (Rosaceae) in Yunnan Province, China, revealed by chloroplast DNA analyses. Tree Genet Genomes 9:433–441

    Google Scholar 

  • Liu J, Zheng X, Potter D, Hu C, Teng Y (2012) Genetic diversity and population structure of Pyrus calleryana (Rosaceae) in Zhejiang province, China. Biochem Syst Ecol 45:69–78

  • Lo EY, Stefanovic S, Christensen KI, Dickinson TA (2009) Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences. Mol Phylogenet Evol 51:157–168

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Maxted N, Scholten M, Codd R, Ford-Lloyd B (2007) Creation and use of a national inventory of crop wild relatives. Biol Conserv 140:142–159

    Article  Google Scholar 

  • Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conserv 13:663–684

    Article  Google Scholar 

  • Miller MP (2005) Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  CAS  PubMed  Google Scholar 

  • Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411

    Article  CAS  Google Scholar 

  • Newton AC, Allnutt TR, Gillies A, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145

    Article  PubMed  Google Scholar 

  • Nielsen R, Beaumont MA (2009) Statistical inferences in phylogeography. Mol Ecol 18:1034–1347

    Article  CAS  PubMed  Google Scholar 

  • Oddou-Muratorio S, Petit RJ, Le Guerroue B, Guesnet D, Demesure B (2001) Pollen- versus seed-mediated gene flow in a scattered forest tree species. Evolution 55:1123–1135

    Article  CAS  PubMed  Google Scholar 

  • Okubo M, Sakuratani T (2000) Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. Sci Hortic-Amst 85:85–90

    Article  CAS  Google Scholar 

  • Petit R, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck G, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488

    Article  CAS  PubMed  Google Scholar 

  • Pu F (1988) Study on pear germplasm resources (in Chinese). China Fruits 12:42–46

    Google Scholar 

  • Pu F, Wang Y (1963) Pomology of China, vol 3. Pears (in Chinese). Shanghai, Shanghai Science and Technology

    Google Scholar 

  • Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407:180–182

    Article  CAS  PubMed  Google Scholar 

  • Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Mol Phylogenet Evol 59:225–244

    Article  PubMed  Google Scholar 

  • Robbani M, Banno K, Yamaguchi K, Fujisawa N, Liu JY, Kakegawa M (2006) Selection of dwarfing pear rootstock clones from Pyrus betulaefolia and P. calleryana seedlings. J Jpn Soc Hortic Sci 75:1–10

    Article  Google Scholar 

  • Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615

    Article  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Rubtsov GA (1944) Geographical distribution of the genus Pyrus and trends and factors in its evolution. Am Nat 78:358–366

    Article  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shang F, Wang P, Feng G (1998) Study on the characteristics and causes of formation of plant diversity in the Funiu Mountains transition region (in Chinese). J Henan Univ (Nat Sci) 28:54–60

    Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Tamura F (2012) Recent advances in research on Japanese pear rootstocks. J Jpn Soc Hortic Sci 81:1–10

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 665:2731–2739

    Article  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teng Y, Tanabe K, Tamura F, Itai A (2002) Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 127:262–270

    CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian B, Liu R, Wang L, Qiu Q, Chen K, Liu J (2009) Phylogeographic analyses suggest that a deciduous species (Ostryopsis davidiana Decne., Betulaceae) survived in northern China during the Last Glacial Maximum. J Biogeogr 36:2148–2155

    Article  Google Scholar 

  • Wang YL, Li X, Guo J, Guo ZG, Li SF, Zhao GF (2010) Chloroplast DNA phylogeography of Clintonia udensis Trautv. & Mey. (Liliaceae) in East Asia. Mol Phylogenet Evol 55:721–732

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Kajita T, Murata J (2006) Chloroplast DNA variation and geographical structure of the Aristolochia kaempferi group (Aristolochiaceae). Am J Bot 93:442–453

    Article  CAS  PubMed  Google Scholar 

  • Wuyun T, Ma T, Uematsu C, Katayama H (2013) A phylogenetic network of wild Ussurian pears (Pyrus ussuriensis Maxim.) in China revealed by hypervariable regions of chloroplast DNA. Tree Genet Genomes 9:167–177

    Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16

    Article  CAS  Google Scholar 

  • Yao LH, Zheng XY, Cai DY, Gao YA, Wang K, Cao YF, Teng YW (2010) Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus. Genet Resour Crop Ev 57:841–851

    Article  CAS  Google Scholar 

  • Yu T (1979) Taxonomy of the fruit tree in China (in Chinese). China Agriculture, Beijing

    Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zeng Y (2000) Plant diversity and protection of Funiu Mountains (in Chinese). J Henan Univ (Nat Sci) 30:76–81

    Google Scholar 

  • Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ (2005) Phylogeography of the Qinghai–Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol Ecol 14:3513–3524

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Sun P, Niu Q, Teng Y (2013) Distribution situation and assessment of morphological diversity of wild Pyrus betulaefolia in Northern China (in Chinese). J Fruit Sci 30:918–923

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30871690), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110101110091), and Specialized Research Fund for Major Science and Technique of Zhejiang Province of China (No. 2012C12904-2).

Data archiving statement

The accD–psaI and trnL–trnF sequences have been submitted to GeneBank and the accession numbers were from KF771383 to KF771402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwen Teng.

Additional information

Communicated by D. Chagné

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Mismatch distribution analysis for 18 populations of Pyrus betulaefolia. The observed number of differences between pairs of haplotypes is plotted with a dashed line. The solid line indicates the expected distribution under a sudden expansion model. (JPEG 1262 kb)

Fig. S2

Haplotype networks of Pyrus betulaefolia constructed in TCS under the 95% statistical parsimony criterion. The nineteen haplotypes H1–H19 are represented by different colors. Small, open circles represent missing haplotypes. Both solid and dot lines represent single mutant events, dot lines showed the resolved loops in the nested clade analysis. Numbers labeled on the branches indicate the locations of mutant nucleotides. (JPEG 2180 kb)

Table S1

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zong, Y., Sun, P., Liu, J. et al. Chloroplast DNA-based genetic diversity and phylogeography of Pyrus betulaefolia (Rosaceae) in Northern China. Tree Genetics & Genomes 10, 739–749 (2014). https://doi.org/10.1007/s11295-014-0718-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0718-0

Keywords

Navigation