Skip to main content

Advertisement

Log in

Evaluation of mandibular morphologic measurements and trabecular structure among subgroups of impacted mandibular third molars

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate mandibular morphologic measurements and trabecular structures that may cause mandibular third molar (MM3) impaction according to MM3 subgroups.

Methods

A total of 150 MM3 of 2175 panoramic radiographs (PRs) were reviewed. MM3s according to Winter (vertical), Pell & Gregory Class 1 and group: A, B, C on PRs were included in the study group. Fractal dimensions (FD) and mandibular morphologic measurements were evaluated. Statistical analysis for parametric values was performed using one-way analysis of variance (ANOVA). Statistical analysis for non-parametric values was performed using the Kruskal–Wallis H test.

Results

Statistically, a significant difference was found only in terms of angle of impaction among the groups of MM3 (p < 0.05) [Winter (vertical), and Pell & Gregory Class 1 and group A, B, C]. There was no difference among groups A, B, C in mandibular morphology and trabecular structure, but group C showed different characteristics than the other groups only in terms of impaction angle.

Conclusion

The trabecular structure and morphometric properties except for the angle of impaction do not affect impacted MM3s with adequate retromolar space and vertical angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bishara SE, Andreasen G. Third molars: a review. Am J Orthod. 1983. https://doi.org/10.1016/s0002-9416(83)90298-1.

    Article  PubMed  Google Scholar 

  2. Dachi SF, Howell FV. A survey of 3,874 routine full-mouth radiographs: II. A study of impacted teeth. Oral Surg Oral Med Oral Pathol. 1961. https://doi.org/10.1016/0030-4220(61)90204-3.

    Article  PubMed  Google Scholar 

  3. van der Linden W, Cleaton-Jones P. Diseases and lesions associated with third molars: review of 1001 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995. https://doi.org/10.1016/s1079-2104(05)80270-7.

    Article  PubMed  Google Scholar 

  4. Björk A, Jensen E, Palling M. Mandibular growth and third molar impaction. Acta Odontol Scand. 1956. https://doi.org/10.3109/00016357.2013.770918.

    Article  Google Scholar 

  5. Behbehani F, Årtun J, Thalib L. Prediction of mandibular third-molar impaction in adolescent orthodontic patients. Am J Orthod Dentofac Orthop. 2006. https://doi.org/10.1016/j.ajodo.2006.03.002.

    Article  Google Scholar 

  6. Ricketts RM. A principle of arcial growth of the mandible. Angle Orthod. 1972. https://doi.org/10.1043/0003-3219(1972)042%3c0368:APOAGO%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  7. Schulhof RJ. Third molars and orthodontic diagnosis. J Clin Orthod. 1976;10:272–81.

    PubMed  Google Scholar 

  8. Capelli J Jr. Mandibular growth and third molar impaction in extraction cases. Angle Orthod. 1991. https://doi.org/10.1043/0003-3219(1991)061%3c0223:MGATMI%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  9. Richardson ME. The etiology and prediction of mandibular third molar impaction. Angle Orthod. 1977. https://doi.org/10.1043/0003-3219(1977)047%3c0165:TEAPOM%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  10. Björk A. Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant method. J Dent Res. 1963. https://doi.org/10.1177/00220345630420014701.

    Article  PubMed  Google Scholar 

  11. Begg PR. Stone age man’s dentition: with reference to anatomically correct occlusion, the etiology of malocclusion, and a technique for its treatment. Am J Orthod Dentofac Orthop. 1954. https://doi.org/10.1016/0002-9416(54)90092-5.

    Article  Google Scholar 

  12. Abu Alhaija ES. Panoramic radiographs: determination of mandibular steepness. J Clin Pediatr Dent. 2005. https://doi.org/10.17796/jcpd.29.2.q4501432454g0763.

    Article  Google Scholar 

  13. Akarslan ZZ, Kocabay C. Assessment of the associated symptoms, pathologies, positions and angulations of bilateral occurring mandibular third molars: Is there any similarity? Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009. https://doi.org/10.1016/j.tripleo.2009.05.036.

    Article  PubMed  Google Scholar 

  14. Ng F, Burns M, Kerr W. The impacted lower third molar and its relationship to tooth size and arch form. Eur J Orthod. 1986. https://doi.org/10.1093/ejo/8.4.254.

    Article  PubMed  Google Scholar 

  15. Ventä I, Murtomaa H, Ylipaavalniemi P. A device to predict lower third molar eruption. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997. https://doi.org/10.1016/s1079-2104(97)90358-9.

    Article  PubMed  Google Scholar 

  16. Ricketts R. Studies leading to the practice of abortion of lower third molars. Dent Clin N Am. 1979;23:393–411.

    PubMed  Google Scholar 

  17. Gümrükçü Z, Balaban E, Karabağ M. Is there a relationship between third-molar impaction types and the dimensional/angular measurement values of posterior mandible according to Pell & Gregory/Winter Classification? Oral Radiol. 2020. https://doi.org/10.1007/s11282-019-00420-2.

    Article  PubMed  Google Scholar 

  18. Juodzbalys G, Daugela P. Mandibular third molar impaction: review of literature and a proposal of a classification. J Oral Maxillofac Res. 2013. https://doi.org/10.5037/jomr.2013.4201.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pell GJ. Impacted mandibular third molars: classification and modified techniques for removal. Dent Dig. 1933;39:330–8.

    Google Scholar 

  20. Winter G. Principles of exodontia as applied to the impacted third molar: a complete treatise on the operative technic with clinical diagnoses and radiographic interpretations. St. Louis: American Medical Book; 1926.

    Google Scholar 

  21. Palma LF, Tateno RY, Remondes CM, Marcucci M, Cortes ARG. Impact of radiotherapy on mandibular bone: a retrospective study of digital panoramic radiographs. Imaging Sci Dent. 2020. https://doi.org/10.5624/isd.2020.50.1.31.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sánchez I, Uzcátegui G. Fractals in dentistry. J Dent. 2011. https://doi.org/10.1016/j.jdent.2011.01.010.

    Article  PubMed  Google Scholar 

  23. Bollen A, Taguchi A, Hujoel P, Hollender L. Fractal dimension on dental radiographs. Dentomaxillofac Radiol. 2001. https://doi.org/10.1038/sj/dmfr/4600630.

    Article  PubMed  Google Scholar 

  24. Bayrak S, Bulut DG, Orhan K, Sinanoğlu EA, Çakmak EŞK, Mısırlı M, et al. Evaluation of osseous changes in dental panoramic radiography of thalassemia patients using mandibular indexes and fractal size analysis. Oral Radiol. 2020. https://doi.org/10.1007/s11282-019-00372-7.

    Article  PubMed  Google Scholar 

  25. Hwang JJ, Lee J-H, Han S-S, Kim YH, Jeong H-G, Choi YJ, et al. Strut analysis for osteoporosis detection model using dental panoramic radiography. Dentomaxillofac Radiol. 2017. https://doi.org/10.1259/dmfr.20170006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Akbulut S, Bayrak S, Korkmaz YN. Prediction of rapid palatal expansion success via fractal analysis in hand-wrist radiographs. Am J Orthod Dentofac Orthop. 2020. https://doi.org/10.1016/j.ajodo.2019.07.018.

    Article  Google Scholar 

  27. Gulec M, Tassoker M, Ozcan S, Orhan K. Evaluation of the mandibular trabecular bone in patients with bruxism using fractal analysis. Oral Radiol. 2020. https://doi.org/10.1007/s11282-020-00422-5.

    Article  PubMed  Google Scholar 

  28. Al-Gunaid TH, Bukhari AK, El Khateeb SM, Yamaki M. Relationship of mandibular ramus dimensions to lower third molar impaction. Eur J Dent. 2019. https://doi.org/10.1055/s-0039-1693922.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abu Alhaija E, AlBhairan H, AlKhateeb S. Mandibular third molar space in different antero-posterior skeletal patterns. Eur J Orthod. 2011. https://doi.org/10.1055/s-0039-1693922.

    Article  PubMed  Google Scholar 

  30. Breik O, Grubor D. The incidence of mandibular third molar impactions in different skeletal face types. Aust Dent J. 2008. https://doi.org/10.1111/j.1834-7819.2008.00073.x.

    Article  PubMed  Google Scholar 

  31. Servais JA, Gaalaas L, Lunos S, Beiraghi S, Larson BE, Leon-Salazar V. Alternative cone-beam computed tomography method for the analysis of bone density around impacted maxillary canines. Am J Orthod Dentofac Orthop. 2018. https://doi.org/10.1016/j.ajodo.2018.01.008.

    Article  Google Scholar 

  32. White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999. https://doi.org/10.1016/s1079-2104(99)70097-1.

    Article  PubMed  Google Scholar 

  33. Faul F, Erdfelder E, Lang A-G, Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007. https://doi.org/10.3758/bf03193146.

    Article  PubMed  Google Scholar 

  34. Peterson LJ. Principles of management of impacted teeth. In: Peterson LJ, Ellis E, Hupp JR, Tucker MR, editors. Contemporary oral and maxillofacial surgery. 3rd ed. St. Louis: Mosby; 1998. p. 215–48.

    Google Scholar 

  35. Niedzielska IA, Drugacz J, Kus N, Kreska J. Panoramic radiographic predictors of mandibular third molar eruption. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006. https://doi.org/10.1016/j.tripleo.2005.07.003.

    Article  PubMed  Google Scholar 

  36. Richardson M. Changes in lower third molar position in the young adult. Am J Orthod Dentofac Orthop. 1992. https://doi.org/10.1016/0889-5406(92)70047-E.

    Article  Google Scholar 

  37. Sewerin I, Von Wowern N. A radiographic four-year follow-up study of asymptomatic mandibular third molars in young adults. Int Dent J. 1990;40(1):24–30.

    PubMed  Google Scholar 

  38. Legović M, Legović I, Brumini G, VanĎura I, Ćabov T, Ovesnik M, et al. Correlation between the pattern of facial growth and the position of the mandibular third molar. J Oral Maxillofac Surg. 2008. https://doi.org/10.1016/j.joms.2007.12.013.

    Article  PubMed  Google Scholar 

  39. Hassan AH. Mandibular cephalometric characteristics of a Saudi sample of patients having impacted third molars. Saudi Dent J. 2010. https://doi.org/10.1016/j.sdentj.2010.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hattab FN, Alhaija ES. Radiographic evaluation of mandibular third molar eruption space. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999. https://doi.org/10.1016/s1079-2104(99)70029-6.

    Article  PubMed  Google Scholar 

  41. Kaplan RG. Some factors related to mandibular third molar impaction. Angle Orthod. 1975. https://doi.org/10.1043/0003-3219(1975)045%3c0153:SFRTMT%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  42. Dierkes DD. An investigation of the mandibular third molars in orthodontic cases. Angle Orthod. 1975. https://doi.org/10.1043/0003-3219(1975)045%3c0207:AIOTMT%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  43. Shiller WR. Positional changes in mesio-angular impacted mandibular third molars during a year. J Am Dent Assoc. 1979. https://doi.org/10.14219/jada.archive.1979.0295.

    Article  PubMed  Google Scholar 

  44. Haavikko K, Altonen M, Mattila K. Predicting angulational development and eruption of the lower third molar. Angle Orthod. 1978. https://doi.org/10.1043/0003-3219(1978)048%3c0039:PADAEO%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  45. Uthman AT. Retromolar space analysis in relation to selected linear and angular measurements for an Iraqi sample. Surg Oral Med Oral Pathol Oral Radiol Endod. 2007. https://doi.org/10.1016/j.tripleo.2007.05.013.

    Article  Google Scholar 

  46. Moss ML. Functional analysis of human mandibular growth. J Prosthet Dent. 1960. https://doi.org/10.1016/0022-3913(60)90228-6.

    Article  Google Scholar 

  47. Moss ML, Rankow RM. The role of the functional matrix in mandibular growth. Angle Orthod. 1968. https://doi.org/10.1043/0003-3219(1968)038%3c0095:TROTFM%3e2.0.CO;2.

    Article  PubMed  Google Scholar 

  48. Moss ML, Salentijn L. The primary role of functional matrices in facial growth. Am J Orthod. 1969. https://doi.org/10.1016/0002-9416(69)90034-7.

    Article  PubMed  Google Scholar 

  49. Ingervall B, Helkimo E. Masticatory muscle force and facial morphology in man. Arch Oral Biol. 1978. https://doi.org/10.1016/0003-9969(78)90217-0.

    Article  PubMed  Google Scholar 

  50. Ricketts RM. Rockey mountain data systems. orthodontic diagnosis and planning their roles in preventive and rehabilitative dentistry. Denver: Rocky Mountain Orthodontics, 1982.

  51. Throckmorton GS, Finn RA, Bell WH. Biomechanics of differences in lower facial height. Am J Orthod. 1980. https://doi.org/10.1016/0002-9416(80)90106-2.

    Article  PubMed  Google Scholar 

  52. Gomes SGF, Custodio W, Jufer JSM, Cury AADB, Garcia RCMR. Mastication, EMG activity and occlusal contact area in subjects with different facial types. Cranio. 2010. https://doi.org/10.1179/crn.2010.035.

    Article  PubMed  Google Scholar 

  53. Kiliaridis S. Masticatory muscle influence on craniofacial growth. Acta Odontol Scand. 1995. https://doi.org/10.3109/00016359509005972.

    Article  PubMed  Google Scholar 

  54. Bresin A, Kiliaridis S, Strid K-G. Effect of masticatory function on the internal bone structure in the mandible of the growing rat. Eur J Oral Sci. 1999. https://doi.org/10.1046/j.0909-8836.1999.eos107107.x.

    Article  PubMed  Google Scholar 

  55. Tsunori M, Mashita M, Kasai K. Relationship between facial types and tooth and bone characteristics of the mandible obtained by CT scanning. Angle Orthod. 1998. https://doi.org/10.1043/0003-3219(1998)068%3c0557:RBFTAT%3e2.3.CO;2.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MG conceived the ideas; MG, DNG and TEK collected the datas; DNG and TEK assessed the datas; MG analysed the data, MG and IK led the writing. All authors approved the final form of the manuscript.

Corresponding author

Correspondence to Merve Gonca.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study.

Ethical statement

The study design was approved by the Ethics Committee of the Recep Tayyip Erdogan University Faculty of Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonca, M., Gunacar, D.N., Kose, T.E. et al. Evaluation of mandibular morphologic measurements and trabecular structure among subgroups of impacted mandibular third molars. Oral Radiol 38, 63–71 (2022). https://doi.org/10.1007/s11282-021-00527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-021-00527-5

Keywords

Navigation