Skip to main content
Log in

Comparative Study of MAC Protocols for Wireless Mesh Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless networking is encouraged by the constant enhancement of sensors’ ability and wireless communication. To provide service quality support for multimedia viz. audio and video streams, the IEEE 802.11e MAC (Media Access Control) improves basic 802.11 MAC. IEEE 802.11 standard series such as IEEE 802.11a, b, g, n, p, and ac have been promoted and specified in the current communications and connection development. Each standard has functionality that matches the kind of applications for which the standard is intended. IEEE 802.11ac has better performance with fewer interferences and achieves gigabits per second capacity transfer rates. This paper discusses the comparative examination of the IEEE 802.11a, IEEE 802.11b, IEEE 802.11 g, IEEE 802.11n, IEEE 802.11p, and IEEE 802.11ac standards which increase accuracy and performance pertaining to the IEEE 802.11 standard. In this paper, we investigate the design requirements for numerous simultaneous peer-to-peer connections. Further, this study offers a systematic review and analysis of the MAC layer in WMN (Wireless Mesh Network) and also highlights their open research issues and challenges. Finally, this paper discusses various potential directions for future research in this area with an emphasis on their strengths and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

Acronyms :

Full Name

WMN:

Wireless Mesh Network.

MAC:

Media Access Control.

MANET:

Mobile Ad-hoc Network.

GSM:

Global System for Mobile Communications.

WLAN:

Wireless Local Area Network.

APs:

Access Points.

CSPAN:

Cable Satellite Public Affairs Network.

CSMA/CA:

Carrier Sense Multiple Access with Collision Avoidance.

QoS:

Quality of Service.

PHY:

Physical Layer.

MPT/MPR:

Multi-Packet Transmission/Reception.

MPC:

Concurrent Communication Message-Passing Concurrency.

MU-MIMO:

Multi-User Multiple Input Multiple Output.

MS:

Mobile Station.

BS:

Base Station.

RS:

Relay Station.

SA:

Security Association.

PCF:

Point Coordination Function.

DCF:

Distributed Coordination Function.

HCF:

Hybrid Connectivity Feature.

EDCA:

Enhanced Distributed Channel Access.

HCCA:

HCF Controlled Access.

Vo-WLAN:

Voice over Wireless LAN.

FD-MAC:

Flow Driven Media Access Control.

PDR:

Packet Delivery Ratio.

MACA-P:

Medium Access via Collision Avoidance with Enhanced Parallelism.

MRU:

Multi-Radio Unification.

CDMA:

Code Division Multiple Access.

AODV:

Ad-hoc On-demand Distance Vector Routing.

DSR:

Dynamic Source Routing.

OLSR:

Optimized Link-State Routing Protocol.

GRP:

Geographic Routing Protocol.

EDCF:

Enhanced Distributed Coordination Function.

OFDM:

Orthogonal Frequency Division Multiplexing.

FHSS:

Frequency-Hopping Spread Spectrum.

DSSS:

Direct Sequence Spread Spectrum.

ERP:

Extended Rate PHY.

ERP-DSSS-CCK:

DSSS-CCK Extended Rate Physical Direct Sequence Spread Spectrum Complementary Code Keying.

ERP-OFDM:

Extended Rate Physical Orthogonal Frequency Division Multiplexing

PBCC:

Packet Binary Convolution Code

DSSS-OFDM:

Direct Sequence Spread Spectrum Orthogonal Frequency Division Multiplexing

DSRC:

Dedicated Short-Range Communications

CCA:

Clear Channel Assessment

FHSS:

Frequency Hopping Spread Spectrum

References

  1. Zhang, Y., Kishk, M. A., & Alouini, M. S. (Jun. 2021). A Survey on Integrated Access and Backhaul Networks. Front Commun Networks, 2, p. 12,. https://doi.org/10.3389/FRCMN.2021.647284/BIBTEX.

  2. Past and Present Report - Mobility Report - Ericsson “Past and present reports - Mobility Report - Ericsson.” https://www.ericsson.com/en/reports-and-papers/mobility-report/reports. Accessed April 30, 2024.

  3. Abdelrahman, R. B. M., Mustafa, A. B. A., & Osman, A. A. (2015). A comparison between IEEE 802.11 a, b, g, n and ac standards. IOSR J Comput Eng, 17(5), 26–29.

    Google Scholar 

  4. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: a survey, Comput. Networks, 47(4), 445–487, https://doi.org/10.1016/J.COMNET.2004.12.001.

  5. Gummalla, A. C. V., & Limb, J. O. (Dec. 2009). Wireless medium access control protocols. IEEE Commun Surv Tutorials, 3(2), 2–15. https://doi.org/10.1109/COMST.2000.5340799.

  6. Jurdak, R., Lopes, C. V., & Baldi, P. (2009). A survey, classification and comparative analysis of medium access control protocols for ad hoc networks, IEEE Commun. Surv. Tutorials, 6(1), 2–16, https://doi.org/10.1109/COMST.2004.5342231.

  7. KumarSunil, R. S., & DengJing (May 2006). Medium Access Control protocols for ad hoc wireless networks. Ad Hoc Networks, 4(3), 326–358. https://doi.org/10.1016/J.ADHOC.2004.10.001.

  8. Institute of Electrical and Electronics Engineers (IEEE) (2005). IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and physical layer (PHY) Specifications - Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements,” in IEEE Std 802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003), https://doi.org/10.1109/IEEESTD.2005.97890.

  9. Wang, H., Tan, S., Zheng, J. (2009). FD-MAC: A flow-driven MAC protocol for mobile ad hoc networks. GLOBECOM - IEEE Glob Telecommun Conf. https://doi.org/10.1109/GLOCOM.2009.5425657.

    Article  Google Scholar 

  10. Bordim, J. L., Barbosa, A. V., Caetano, M. F., & Barreto, P. S. (2010). IEEE802.11b/g standard: Theoretical maximum throughput. Proc - 2010 1st Int Conf Netw Comput ICNC 2010, 197–201. https://doi.org/10.1109/IC-NC.2010.40.

  11. Chatzimisios, P., Vitsas, V., & Boucouvalas, A. C. (2002). Throughput and delay analysis of IEEE 802.11 protocol. Proc– 5th IEEE Int Work Networked Appliances IWNA 2002, 168–174. https://doi.org/10.1109/IWNA.2002.1241355.

  12. Khalaf, R., & Rubin, I. (2004). Enhancing the throughput-delay performance of IEEE802.11 based networks through direct transmissions. IEEE Veh Technol Conf, 60(4), 2912–2916. https://doi.org/10.1109/VETECF.2004.1400593.

    Article  Google Scholar 

  13. Vlachou, C., Herzen, J., & Thiran, P. (2013). Fairness of MAC protocols: IEEE 1901 vs. 802.11. ISPLC 2013–2013 IEEE 17th Int Symp Power Line Commun Its Appl Proc, 58–63. https://doi.org/10.1109/ISPLC.2013.6525825.

  14. Energy consumption trade-offs in power constrained networks| Guide books. https://dl.acm.org/doi/abs/10.5555/1195028 (accessed Apr. 04, 2024).

  15. Institute of Electrical and Electronics Engineers (IEEE) (1997). 802.11–1997 - IEEE Standard for Wireless LAN Medium Access Control (MAC) and physical layer (PHY) specifications.

  16. Spyropoulos, A., & Raghavendra, C. S. (2003). Asympotic Capacity bounds for Ad-hoc networks revisited: The directional and smart antenna cases. GLOBECOM - IEEE Glob Telecommun Conf, 3, 1216–1220. https://doi.org/10.1109/GLOCOM.2003.1258432.

    Article  Google Scholar 

  17. Yi, S., Pei, Y., & Kalyanaraman, S. (2003). On the capacity improvement of ad hoc wireless networks using directional antennas, in MobiHoc'03: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, p. 108–116, https://doi.org/10.1145/778415.778429.

  18. Li, P., Zhang, C., & Fang, Y. (2011). The capacity of wireless ad hoc networks using directional antennas, IEEE Trans. Mob. Comput, 10(10), 1374–1387, https://doi.org/10.1109/TMC.2010.243.

  19. Toumpis, S., & Goldsmith, A. J. (2003). Capacity regions for wireless ad hoc networks. IEEE Trans Wirel Commun, 2(4), 736–748. https://doi.org/10.1109/TWC.2003.814342.

    Article  Google Scholar 

  20. Hamdaoui, B., & Shin, K. G. (2009). Throughput behavior in multihop multiantenna wireless networks, IEEE Trans. Mob. Comput, 8(11), 1480–1494, Nov. https://doi.org/10.1109/TMC.2009.58.

  21. IEEE 802.11 Working Group. (2009). IEEE 802.11n-2009—Amendment 5. Enhancements for Higher Throughput.

  22. Tong, L., Zhao, Q., & Mergen, G. (2001). Multipacket reception in random access wireless networks: From signal processing to optimal medium access control, IEEE Commun. Mag, 39(11), 108–112, Nov. https://doi.org/10.1109/35.965367.

  23. Wang, L. C., Huang, S. Y., & Chen, A. (2004). On the throughput performance of CSMA-based wireless local area network with directional antennas and capture effect: A cross-layer analytical approach, 2004 IEEE Wirel. Commun. Netw. Conf. WCNC vol. 3, pp. 1879–1884, 2004, https://doi.org/10.1109/WCNC.2004.1311840.

  24. Carvalho, M. M., & Garcia-Luna-Aceves, J. J. (2006). Modeling wireless ad hoc networks with directional antennas. Proc - IEEE INFOCOM. https://doi.org/10.1109/INFOCOM.2006.120.

    Article  Google Scholar 

  25. Babich, F., & Comisso, M. (2009). Throughput and delay analysis of 802.11-based wireless networks using smart and directional antennas. Ieee Transactions on Communications, 57(5), 1413–1423. https://doi.org/10.1109/TCOMM.2009.05.070250.

    Article  Google Scholar 

  26. Chan, D. S., & Berger, T. (2004). Performance and cross-layer design of CSMA for wireless networks with multipacket reception. Conf Rec - Asilomar Conf Signals Syst Comput, 2, 1917–1921. https://doi.org/10.1109/ACSSC.2004.1399498.

    Article  Google Scholar 

  27. Babich, F., & Comisso, M. (Jun. 2010). Theoretical analysis of asynchronous multi-packet reception in 802.11 networks. Ieee Transactions on Communications, 58(6), 1782–1794. https://doi.org/10.1109/TCOMM.2010.06.090186.

  28. Sundaresan, K., Sivakumar, R., Ingram, M. A., & Chang, T. Y. (2004). A fair medium access control protocol for ad-hoc networks with MIMO links. Proc - IEEE INFOCOM, 4, 2559–2570. https://doi.org/10.1109/INFCOM.2004.1354676.

    Article  Google Scholar 

  29. Adya, A., Bahl, P., Padhye, J., Wolman, A., & Zhou, L. (2004). A multi-radio unification protocol for IEEE 802.11 wireless networks. Proc - First Int Conf Broadband Networks BroadNets 2004, 344–354. https://doi.org/10.1109/BROADNETS.2004.8.

  30. Maheshwari, R., Gupta, H., & Das, S. R. (2006). Multichannel MAC protocols for wireless networks, 3rd Annu. IEEE Commun. Soc. Sens. Adhoc Commun. Networks, Secon 2006, vol. 2, pp. 393–401, 2006, https://doi.org/10.1109/SAHCN.2006.288495.

  31. Muqattash, A., & Krunz, M. (2003). CDMA-based MAC protocol for wireless ad hoc networks, in MobiHoc ′03: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, p. 153, https://doi.org/10.1145/778415.778434.

  32. Choudhury, R. R., & Vaidya, N. H. (2004). Deafness: A MAC problem in ad hoc networks when using directional antennas, Proc. - Int. Conf. Netw. Protoc. ICNP, pp. 283–292, https://doi.org/10.1109/ICNP.2004.1348118.

  33. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Comput Networks, 47(4), 445–487. https://doi.org/10.1016/j.comnet.2004.12.001.

    Article  Google Scholar 

  34. Choudhury, R. R., Yang, X., Ramanathan, R., & Vaidya, N. H. (2006). On designing MAC protocols for wireless networks using directional antennas, IEEE Trans. Mob. Comput, 5(5), 477–491, Sep. https://doi.org/10.1109/TMC.2006.69.

  35. Bianchi, G., Messina, D., Scalia, L., & Tinnirello, I. (2005). A space-division time-division multiple access scheme for high throughput provisioning in WLANs. IEEE Int Conf Commun, 4, 2728–2733. https://doi.org/10.1109/ICC.2005.1494844.

    Article  Google Scholar 

  36. Liu, X., Sheth, A., Kaminsky, M., Papagiannaki, K., Seshan, S., & Steenkiste, P. (2009). DIRC: Increasing indoor wireless capacity using directional antennas, Comput. Commun. Rev, 39(4), 171–182, Aug. https://doi.org/10.1145/1594977.1592589.

  37. Tan, K., & SAM. (2009).: Enabling practical spatial multiple access in wireless LAN, Proc. Annu. Int. Conf. Mob. Comput. Networking, MOBICOM, pp. 49–60, https://doi.org/10.1145/1614320.1614327.

  38. Liu, X., Sheth, A., Kaminsky, M., Papagiannaki, K., Seshan, S., & Steenkiste, P. (2010). Pushing the envelope of indoor wireless spatial reuse using directional access points and clients, Proc. Annu. Int. Conf. Mob. Comput. Networking, MOBICOM, pp. 209–220, https://doi.org/10.1145/1859995.1860020.

  39. Shen, W. L., Lin, K. C. J., Gollakota, S., & Chen, M. S. (Jan. 2014). Rate adaptation for 802.11 multiuser MIMO networks. Ieee Transactions on Mobile Computing, 13(1), 35–47. https://doi.org/10.1109/TMC.2013.115.

  40. Babich, F., Comisso, M., Crismani, A., & Dorni, A. (2013). Multi-packet communication in 802.11 networks by spatial reuse: From theory to protocol. IEEE Int Conf Commun, 5105–5109. https://doi.org/10.1109/ICC.2013.6655392.

  41. Babich, F., & Comisso, M. (2013). Multi-packet communication by spatial reuse: Application scenarios and open research issues, 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1308–1313, 2013, https://doi.org/10.1109/IWCMC.2013.6583745.

  42. Wang, G., & Qin, Y. (Oct. 2019). MAC Protocols for Wireless Mesh Networks with Multi-beam antennas: A Survey. Lect Notes Networks Syst, 69, 117–142. https://doi.org/10.1007/978-3-030-12388-8_9.

  43. Tian, L., Santi, S., Seferagić, A., Lan, J., & Famaey, J. (May 2021). Wi-Fi HaLow for the internet of things: An up-to-date survey on IEEE 802.11ah research. J Netw Comput Appl, 182, 103036. https://doi.org/10.1016/J.JNCA.2021.103036.

  44. Ahmed, N., & Misra, S. (2020). Channel Access mechanism for IEEE 802.11ah-Based Relay Networks. IEEE Int Conf Commun 2020-June Jun. https://doi.org/10.1109/ICC40277.2020.9148917.

    Article  Google Scholar 

  45. 802.16. (2009). j-2009 - IEEE Standard for local and metropolitan area networks part 16: Air Interface for Broadband Wireless Access systems Amendment 1. Multihop Relay Specification.

  46. ACHARYA, A., MISRA, A., & BANSAL, S. (2004). Design and Analysis of a Cooperative Medium Access Scheme for Wireless Mesh Networks, First Int. Conf. Broadband Networks BROADNETS Proc. San Jose, CA, Oct. 25–29, p. 621, Oct. 2004, https://doi.org/10.1109/BROADNETS.2004.29.

  47. Ramanathan, R. (2001). On the performance of ad hoc networks with beamforming antennas, Proc. 2001 ACM Int. Symp. Mob. Ad Hoc Netw. Comput. MobiHoc pp. 95–105, 2001, https://doi.org/10.1145/501426.501430.

  48. Banerji, S., Chowdhury, R. S. (2013). 802.11: On IEEE 802.11: Wireless LAN Technology. Orig Publ Int J Mob Netw Commun Telemat, 3(4). https://doi.org/10.5121/ijmnct.2013.3405.

  49. Kumar, M. A., & Srikanth, V. Survey of IEEE 802.11 standards - Current Issue - IJSR.

  50. Vir, D. Productivity Analysis of reactive routing protocol for IEEE 802.11e standard using QualNet Simulator. International Journal of Engineering Research and Applications, 3, pp. 1190–1196.

  51. Singh, M. (2012). Performance analysis of proactive, reactive and Hybrid MANET Routing protocols on IEEE 802.11 Standard. International Journal of Computers and Applications, 54(12), 975–8887.

    Google Scholar 

  52. Xu, S., & Saadawi, T. (2001). Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks? Ieee Communications Magazine, 39(6), 130–137. https://doi.org/10.1109/35.925681.

    Article  Google Scholar 

  53. Hsieh, H. Y., & Sivakumar, R. (2002) IEEE 802.11 over Multi-hop Wireless Networks: Problems and New Perspectives, in Proceedings IEEE 56th Vehicular Technology Conference, pp. 748-752.

  54. Zhu, H., Cao, G., Yener, A., & Mathias, A. D. (2004). EDCF-DM: A novel enhanced distributed coordination function for wireless ad hoc networks. IEEE Int Conf Commun, 7, 3886–3890. https://doi.org/10.1109/ICC.2004.1313280.

    Article  Google Scholar 

  55. Romdhani, L., Ni, Q., Turletti, T., & Adaptive, E. D. C. F. (2003). Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks. IEEE Wirel Commun Netw Conf WCNC, 2, 1373–1378. https://doi.org/10.1109/WCNC.2003.1200574.

    Article  Google Scholar 

  56. IEEE 80211a-1999 - IEEE Standard for Telecommunications and Information Exchange between Systems - LAN/MAN specific requirements - part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: High speed physical layer in the 5 G.

  57. IEEE 80211b-1999 - IEEE Standard for Information Technology - Telecommunications and information exchange between systems - local and Metropolitan networks - specific requirements - part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PH.

  58. IEEE 80211 g-2003 - IEEE Standard for Information technology– Local and metropolitan area networks– Specific requirements– Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further Higher Data Rate Extension in.

  59. Sharma, P., & Saxena, A. (2013). Comparison analysis between IEEE 802.11a/b/g/n. Int J Sci Eng Res, 4, 5.

  60. Wi-Fi Advanced| IEEE802.11ac The Next Evolution of Wi-Fi| Qualcomm.

  61. Selvaraj, D. C. (Jul. 2016). Implementation of WLAN N and Estimation of Co Channel and Adjacent Channel Interference. J Comput Eng Inf Technol, 2016(2). https://doi.org/10.4172/2324-9307.1000149.

  62. Qualcomm, & IEEE802.11ac. (2012).: The Next Evolution of Wi-Fi TM Standards.

  63. Committee, L. S. (2010). 802.11p - Amendment 6: Wireless Access in Vehicular Environments, IEEE Std 802.11p p. 51, 2010.

  64. IEEE, & VIP_IEEE (2013). Std 802.11ac. Enhancements for very high throughput for operation in bands below 6 GHz. IEEE 802 11 Work Gr.

  65. Sharma, P., & Singh, G. (2016). Comparison of Wi-Fi IEEE 802.11 standards relating to media access control protocols. Int J Comput Sci Inf Secur, 14(10), 856.

    Google Scholar 

  66. Rebello, J. (2015). WLAN: Differentiation opportunities emerge as 802.11 n rapidly becomes mainstream. August.

  67. Perahia, E., & Stacey, R. (2009). Next generation wireless LANs: Throughput, robustness, and reliability in 802.11n. Cambridge University Press.

  68. Zhou, D., Huang, L., & Lai, T. H. (Aug. 2008). On the scalability of IEEE 802.11 ad-hoc-mode timing synchronization function. Wirel Networks, 14(4), 479–499. https://doi.org/10.1007/S11276-006-0732-8/METRICS.

  69. Singh, M., Kumar, C., & Nath, P. (2018). Challenges and Protocols for P2P applications in Multi-hop Wireless Networks, pp. 310–316, Nov. https://doi.org/10.1109/ICCMC.2018.8487911.

  70. Van Veen, B. D., & Buckley, K. M. (1988). Beamforming: A Versatile Approach to spatial filtering. IEEE ASSP Mag, 5(2), 4–24. https://doi.org/10.1109/53.665.

    Article  Google Scholar 

  71. Arena, F., Pau, G., & Severino, A. (2020). A Review on IEEE 802.11p for Intelligent Transportation Systems, J. Sens. Actuator Networks, 9(2), 22, Apr. 2020. https://doi.org/10.3390/JSAN9020022.

  72. Bejarano, O., & Knightly, E. W. (2013). IEEE 802.11ac: From channelization to multi-user MIMO. Ieee Communications Magazine, 51(10), 84–90. https://doi.org/10.1109/MCOM.2013.6619570.

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ankita Sing, Sudhakar Sing; Shiv Prakash; Methodology: Ankita Sing, Sudhakar Sing, Shiv Prakash; Formal analysis and investigation: Ankita Singh, Sudhakar Singh, Shiv Prakash; Writing - original draft preparation: Ankita Singh, Sudhakar Singh; Writing - review and editing: Sudhakar Singh, Shiv Prakash; Resources: Ankita Singh, Sudhakar Singh, Shiv Prakash; Supervision: Sudhakar Singh, Shiv Prakash.

Conflict of interest

The authors declare that they have no conflict of interest in this paper.

Corresponding author

Correspondence to Sudhakar Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Prakash, S. & Singh, S. Comparative Study of MAC Protocols for Wireless Mesh Network. Wireless Pers Commun 135, 1473–1495 (2024). https://doi.org/10.1007/s11277-024-11114-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11114-2

Keywords

Navigation