Skip to main content
Log in

Bayesian Channel Estimation Under Dual Wideband Effects for THz Massive MIMO Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Terahertz (THz) communication, with its ultra-wide bandwidth of tens of GHz, holds promise for 6th generation networks. However, employing large bandwidth and massive antennas can lead to delay and beam squint effects (together called dual wideband effects), which are not extensively explored in THz massive multi-input multi-output (MIMO) systems. These effects can cause significant array gain loss and degrade the performance of the system, necessitating the design of transceiver algorithms to address these issues. Also, due to the beam squint effect, analog beamforming/combining will become frequency-dependent. In this paper, we have proposed a sparse Bayesian learning (SBL)-based frequency-selective uplink channel estimation method and an orthogonal matching pursuit-based hybrid combiner for THz massive MIMO systems under dual wideband effects. In addition to the signal propagation loss, THz signal strength varies due to mobility. Furthermore, taking double selectivity (both time and frequency selectivity) into account, we have designed an extended Kalman filter (EKF)-based frequency dependent-phase estimator for the THz massive MIMO systems. The performance of the designed channel and phase estimators is assessed using normalized mean square error and bit error rate. Additionally, the performance of an SBL–EKF-based downlink channel estimator is analyzed for doubly selective THz massive MIMO systems under dual wideband effects. This involves estimating channel gains with SBL and frequency-dependent phases with EKF. Simulation results are presented to compare the performance of the proposed and conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., Tufvesson, F., Benjebbour, A., & Wunder, G. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35, 1201–1221.

    Article  Google Scholar 

  2. Elayan, H., Amin, O., Shihada, B., Shubair, R. M., & Alouini, M. S. (2019). Terahertz band: The last piece of RF spectrum puzzle for communication systems. IEEE Open Journal of the Communications Society, 1, 1–32.

    Article  Google Scholar 

  3. Chen, Z., Ma, X., Zhang, B., Zhang, Y., Niu, Z., Kuang, N., Chen, W., Li, L., & Li, S. (2019). A survey on terahertz communications. China Communications, 16(2), 1–35.

    ADS  Google Scholar 

  4. Sarieddeen, H., Alouini, M. S., & Al-Naffouri, T. Y. (2021). An overview of signal processing techniques for terahertz communications. Proceedings of the IEEE, 109(10), 1628–1665.

    Article  Google Scholar 

  5. Liu, X., Chen, Y., Wang, Z., Lu, Z., & Wen, X. (2022). Performance analysis of multi-connectivity under blockage in terahertz communication system. In 2022 IEEE 33rd annual international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1146–1152). IEEE.

  6. Wang, M., et al. (2019). A block sparsity-based estimator for mmWave massive MIMO channels with beam squint. IEEE Transactions on Signal Processing, 68, 49–64.

    Article  ADS  MathSciNet  Google Scholar 

  7. Lee, J., Gil, G. T., & Lee, Y. H. (2016). Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Transactions on Communications, 64(6), 2370–2386.

    Article  Google Scholar 

  8. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Transactions on Wireless Communication, 13(3), 1499–1513.

    Article  Google Scholar 

  9. Méndez-Rial, R., Rusu, C., González-Prelcic, N., Alkhateeb, A., & Heath, R. W. (2016). Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access, 4, 247–267.

    Article  Google Scholar 

  10. Wang, B., Gao, F., Jin, S., Lin, H., & Li, G. Y. (2018). Spatial-and frequency-wideband effects in millimeter-wave massive MIMO systems. IEEE Transactions on Signal Processing, 66(13), 3393–3406.

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, B., Jian, M., Gao, F., Li, G. Y., & Lin, H. (2019). Beam squint and channel estimation for wideband mmWave massive MIMO-OFDM systems. IEEE Transactions on Signal Processing, 67(23), 5893–5908.

    Article  ADS  MathSciNet  Google Scholar 

  12. Elbir, A. M., & Chatzinotas, S. (2023). BSA-OMP: Beam-split-aware orthogonal matching pursuit for THz channel estimation. IEEE Wireless Communications Letters, 12(4), 738–742. https://doi.org/10.1109/LWC.2023.3242699

    Article  Google Scholar 

  13. Kim, I.-S., & Choi, J. (2021). Spatial wideband channel estimation for mmWave massive MIMO systems with hybrid architectures and low-resolution ADCs. IEEE Transactions on Wireless Communications, 20(6), 4016–4029. https://doi.org/10.1109/TWC.2021.3054998

    Article  Google Scholar 

  14. Dovelos, K., Matthaiou, M., Ngo, H. Q., & Bellalta, B. (2021). Channel estimation and hybrid combining for wideband terahertz massive MIMO systems. IEEE Journal on Selected Areas in Communications, 39(6), 1604–1620.

    Article  Google Scholar 

  15. Srivastava, S., Tripathi, A., Varshney, N., Jagannatham, A. K., & Hanzo, L. (2021). Hybrid transceiver design for tera-hertz MIMO systems relying on Bayesian learning aided sparse channel estimation. arXiv:2109.09664.

  16. Du, J., Dong, J., & Gao, F. (2023). Simultaneous channel estimation and localization of terahertz massive MIMO systems via Bayesian tensor decomposition. IEEE Communications Letters, 27(2), 541–545. https://doi.org/10.1109/LCOMM.2022.3223336

    Article  Google Scholar 

  17. Chawla, A., Ciuonzo, D., & Rossi, P. S. (2023) . Sparse Bayesian learning assisted decision fusion in millimeter wave massive MIMO sensor networks. In 2023 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE.

  18. Liu, Y., Dong, N., Zhang, X., Zhao, X., Zhang, Y., & Qiu, T. (2022). DOA estimation for massive MIMO systems with unknown mutual coupling based on block sparse Bayesian learning. Sensors, 22(22), 8634.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Wu, X., Ma, S., Yang, X., & Yang, G. (2022). Clustered sparse Bayesian learning based channel estimation for millimeter-wave massive MIMO systems. IEEE Transactions on Vehicular Technology, 71(12), 12749–12764. https://doi.org/10.1109/TVT.2022.3195498

    Article  Google Scholar 

  20. Zhang, F., Ji, W., & Qiu, L., (2022). Channel estimation for massive MIMO-OTFS systems via sparse Bayesian learning with 2-D local beta process. In IEEE wireless communications and networking conference (WCNC). Austin, TX, USA 2022 (pp. 1383–1388). https://doi.org/10.1109/WCNC51071.2022.9771955.

  21. Shaham, S., Ding, M., Kokshoorn, M., Lin, Z., Dang, S., & Abbas, R. (2019). Fast channel estimation and beam tracking for millimeter wave vehicular communications. IEEE Access, 7, 141104–141118. https://doi.org/10.1109/ACCESS.2019.2944308

    Article  Google Scholar 

  22. Shaham, S., Kokshoorn, M., Ding, M., Lin, Z., & Shirvanimoghaddam, M. (2020). Extended Kalman filter beam tracking for millimeter wave vehicular communications. In 2020 IEEE international conference on communications workshops (ICC workshops), Dublin, Ireland, 2020 (pp. 1–6). https://doi.org/10.1109/ICCWorkshops49005.2020.9145366.

  23. Gao, X., Dai, L., Zhang, Y., Xie, T., Dai, X., & Wang, Z. (2016). Fast channel tracking for terahertz beamspace massive MIMO systems. IEEE Transactions on Vehicular Technology, 66(7), 5689–5696.

    Article  Google Scholar 

  24. Singh, P., Srivastava, S., Mishra, A., Jagannatham, A. K., & Hanzo, L. (2022). Sparse Bayesian learning aided estimation of doubly-selective MIMO channels for filter bank multicarrier systems. IEEE Transactions on Communications, 70(6), 4236–4249. https://doi.org/10.1109/TCOMM.2022.3171815

    Article  Google Scholar 

  25. Srivastava, S., Singh, P., Jagannatham, A. K., Karandikar, A., & Hanzo, L. (2021). Bayesian learning-based doubly-selective sparse channel estimation for millimeter wave hybrid MIMO-FBMC-OQAM systems. IEEE Transactions on Communications, 69(1), 529–543. https://doi.org/10.1109/TCOMM.2020.3029568

    Article  Google Scholar 

  26. Srivastava, S., Kumar, M. S., Mishra, A., Chopra, S., Jagannatham, A. K., & Hanzo, L. (2020). Sparse doubly-selective channel estimation techniques for OSTBC MIMO-OFDM systems: A hierarchical Bayesian Kalman filter based approach. IEEE Transactions on Communications, 68(8), 4844–4858. https://doi.org/10.1109/TCOMM.2020.2995585

    Article  Google Scholar 

  27. Chen, L., Zhou, S., & Wang, W. (2023). MmWave beam tracking with spatial information based on extended Kalman filter. IEEE Wireless Communications Letters, 12(4), 615–619.

    Article  Google Scholar 

  28. Liao, Y., et al. (2020). Nonlinear Kalman filter-based robust channel estimation for high mobility OFDM systems. IEEE Transactions on Intelligent Transportation Systems, 22(11), 7219–7231.

    Article  Google Scholar 

  29. Lien, P. H., Quang, N. D., & Tra, L. T. (2017). Extended Kalman filter for channel and carrier frequency offset estimation. In 2017 international conference on system science and engineering (ICSSE). IEEE.

  30. Zhang, X., Gui, L., Gong, B., Xiong, J., & Qin, Q., (2017). Dynamic sparse channel estimation over doubly selective channels for large-scale MIMO systems. In IEEE international symposium on broadband multimedia systems and broadcasting (BMSB). Cagliari, Italy, 2017 (pp. 1–7).

  31. Muneer, P., & Sameer, S. M. (2017). Joint estimation of doubly selective channels and carrier frequency offsets in high mobility MIMO-OFDMA uplink. Wireless Personal Communications, 95, 4113–4130.

    Article  Google Scholar 

  32. Wipf, D. P., & Rao, B. D. (2004). Sparse Bayesian learning for basis selection. IEEE Transactions on Signal Processing, 52(8), 2153–2164.

    Article  ADS  MathSciNet  Google Scholar 

  33. Srivastava, S., Mishra, A., Rajoriya, A., Jagannatham, A. K., & Ascheid, G. (2018). Quasi-static and time-selective channel estimation for block-sparse millimeter wave hybrid MIMO systems: Sparse Bayesian learning (SBL) based approaches. IEEE Transactions on Signal processing, 67(5), 1251–1266.

    Article  ADS  MathSciNet  Google Scholar 

  34. Kay, S. (1993). Fundamentals of statistical signal processing: Estimation theory (Vol. 1).

  35. Choi, Y., Choi, J. W., & Cioffi, J. M. (2013). A geometric-statistic channel model for THz indoor communications. Journal of Infrared, Millimeter, and Terahertz Waves, 34, 456–467. https://doi.org/10.1007/s10762-013-9975-5

    Article  Google Scholar 

  36. Lin, C., & Li, G. Y. L. (2016). Terahertz communications: An array-of-subarrays solution. IEEE Communications Magazine, 54(12), 124–131. https://doi.org/10.1109/MCOM.2016.1600306CM

    Article  Google Scholar 

  37. Mochnac, J., Marchevsky, S., & Kocan, P. (2009). Bayesian filtering techniques: Kalman and extended Kalman filter basics. In 19th international conference radioelektronika. Bratislava, Slovakia, 2009 (pp. 119–122). https://doi.org/10.1109/RADIOELEK.2009.5158765.

  38. Nadeem, Q.-U.-A., Kammoun, A., & Alouini, M.-S. (2019). Elevation beamforming with full dimension MIMO architectures in 5G systems: A tutorial. IEEE Communications Surveys and Tutorials, 21(4), 3238–3273.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the design of the work and approved the version to be published.

Corresponding author

Correspondence to Soujanya Thallapalli.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thallapalli, S., Sen, D. Bayesian Channel Estimation Under Dual Wideband Effects for THz Massive MIMO Communications. Wireless Pers Commun (2024). https://doi.org/10.1007/s11277-024-10900-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11277-024-10900-2

Keywords

Navigation