Skip to main content
Log in

A Geometric-Statistic Channel Model for THz Indoor Communications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The eventual practical deployment of a terahertz (THz) wireless communication system requires a proper channel model. By considering the unique characteristics of THz propagation, this paper proposes a geometric-statistic channel model for system-level simulation. This work also provides an evaluation methodology for investigating the system performance. Numerical results reveal that the proposed channel model is not only suitable to describe the physical characteristics of the THz channel, but also to investigate system-level performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The influence of double-reflected paths might not be negligible as interference. This paper, however, does not consider their influence with a high signal-to-interference-plus-noise ratio (SINR) assumption.

  2. This paper uses ‘path’ and ‘cluster’ interchangeably.

  3. This notation for angular measurements is used for the rest of whole paper because it makes the angular analysis easier and it also gives an intuitive interpretation at the measurement point.

  4. Refs. [11] and [12] showed that the materials (e.g., glass, plaster, and wood) feature a greater reflectivity for TE polarization than for transverse-magnetic (TM) polarization. Hence, this paper only considers TE polarization and perfect antenna steering.

References

  1. H. Song, and T. Nagatsuma, Present and future of terahertz communications, IEEE Trans. THz Sci. Technol., 1(1), 256–263, (2011).

    Article  Google Scholar 

  2. T. Kürner, Towards future THz communications systems, THz Sci. Technol., 5(1), 11–17, (2012).

    Google Scholar 

  3. IEEE, 802.15 THz Interest Group, Available online at: http://www.ieee802.org/15/pub/IGthz.html. Accessed 24 Sept 2012.

  4. T. Nagatsuma, H. Song, Y. Fujimoto, and K. Miyake et al., Giga-bit wireless link using 300-400 GHz bands, International Topical Meeting on Microwave Photonics (MWP), (2009).

  5. Attenuation by atmospheric gases, ITU, Rec. ITU-R P.676-8, ITU, (2009).

  6. T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. Braun, Link budget analysis for terahertz fixed wireless links, IEEE Trans. THz Sci. Technol., 2(2), 250–256, (2012).

    Article  Google Scholar 

  7. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments, IEEE J. Sel. Topics in Quantum Electron., 14(2), 421–430, (2008).

    Article  Google Scholar 

  8. A. Saleh and R. Valenzuela, A statistical model for indoor multipath propagation, IEEE J. Sel. Areas in Commun., 5(2), 128–137, (1987).

    Article  Google Scholar 

  9. Q. Spencer, M. Rice, B. Jeffs, and M. Jensen, A statistical model for angle of arrival in indoor multipath propagation, IEEE Vehicular Technology Conference (VTC), 1415–1419, (2002).

  10. C. Chong, C. Tan, D. Laurenson, S. McLaughlin, et al., A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems, IEEE J. Sel. Areas in Commun., 21(2), 139–150, (2003).

    Article  Google Scholar 

  11. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, et al., Terahertz characterisation of building materials, IEEE Electron. Lett., 41(18), 1002–1004, (2005).

    Article  Google Scholar 

  12. R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, et al., Scattering analysis for the modeling of THz communication systems, IEEE Trans. Antennas Propag., 55(11), 3002–3009, (2007).

    Article  Google Scholar 

  13. C. Jansen, R. Piesiewicz, D. Mittleman, T. Kürner, and M. Koch, The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems, IEEE Trans. Antennas Propag., 56(5), 1413–1419, (2008).

    Article  Google Scholar 

  14. S. Priebe, M. Jacob, and T. Kürner, AoA, AoD and ToA characteristics of scattered multipath clusters for THz indoor channel modeling, 17th European Wireless Conference (EW), 188–196, (2011).

  15. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, et al. Short-range ultra-broadband terahertz communications: concepts and perspectives, IEEE Antennas Propag. Mag., 49(6), 24–39, (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Woong Choi.

Additional information

This work was supported in part by the DGIST R&D Program (12-HRA-01) and National Research Foundation of Korea (NRF) grant (2012R1A1A1009742) of the Ministry of Education, Science and Technology (MEST) of Korea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y., Choi, JW. & Cioffi, J.M. A Geometric-Statistic Channel Model for THz Indoor Communications. J Infrared Milli Terahz Waves 34, 456–467 (2013). https://doi.org/10.1007/s10762-013-9975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9975-5

Keywords

Navigation