Skip to main content
Log in

Optimal Physical Shared Channels NB-IOT Design BLER Assessment, for Cellular LTE WAN Network in Smart Healthcare

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Particularly, for real time monitoring-IOT has just evolved to support massive capacity Cellular LTE networks. The fundamental issue is the constrained bandwidth that NB-IOT channels allow. Therefore, goal of paper is to enhance the capacity of the NB-IOT physical layer shared channels for uplink and down links. The primary objective of this article is to improve the efficiency of an LTE-OFDM framework for NB-IOT-WAN via BER and BLER assessment. The proposed approach improves performance by selecting suitable cyclic prefix sampling with FFT size. It is planned to adopt M-QAM for increased data transmission capacity and reducing OFDM BER. In order to enhance the capacity approach of diversity reception is considered along with the modified modulation parameters. Increased FFT size is offered for OFDM capacity enhancement for narrowband physical downlink shared channel (NPDSCH) and narrowband physical uplink shared channel (NPUSCH) transceivers. The block error rate (BLER) is used as the performance evaluation parameters for the LTE-OFDM based NB-IOT system. The impact of the higher block transmission length is assessed for the improvement in the BLER rates. It is proposed to use M-QAM for NPUSCH which may offer better capacity of data transmission. The performance is compared with the standard QPSK modulation. For the uplink design under AWGN and frequency selective channels are considered for evaluation. The numbers of receiver antenna are increased for offering the better diversity reception to further enhance the channel capacity. The optimal design parameter selection might improve the performance of the NB-IOT cellular networks. The BLER is evaluated for different case of uplink and downlink designs against the wide range of the SNR. The entire document takes into account all factors in order to get the greatest system efficiency, and it offers capacity enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and material

Various data repositories are available freely in internet for evolution purpose. The code for different existing protocol is available at MATLAB library for proposed work the code will be provide on request.

References

  1. Yonis, A. Z., & Abdulla, M. F. L. (2012). Downlink and uplink physical channels in long term evolution. International journal of Information Technology and Computer Science, 11, 1–10. https://doi.org/10.5815/ijitcs.2012.11.01

    Article  Google Scholar 

  2. Migabo, E., Djouani, K., & Kurien, A. (2018). A modelling approach for the narrowband IOT (NB-IOT) physical (PHY) layer performance. In IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA (pp. 5207–5214). https://doi.org/10.1109/IECON.2018.8591281

  3. Wang, Z., Deng, Z., Xu, K., Zhang, P., & Liu, T. (2022). Based on Internet of Things platform using NB-iot communication low-power weather station system. In: Qian, Z., Jabbar, M., & Li, X. (Eds.), Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications (Springer). WCNA 2021. Lecture Notes in Electrical Engineering. https://doi.org/10.1007/978-981-19-2456-9_65

  4. Nair, V., Litjens, R., & Zhang, H. (2019). Optimisation of NB-IOT deployment for smart energy distribution networks. Journal on Wireless Communications and Networking, 2019, 186. https://doi.org/10.1186/s13638-019-1485-2J

    Article  Google Scholar 

  5. Chen, J., Shi, J., Chen, X., Wu, Y., Qian, L., & Huang, L. (2018). Technologies and Applications of Narrowband Internet of Things. In: Meng, L., & Zhang, Y. (Eds.), Machine Learning and Intelligent Communications. MLICOM 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 251). Springer. https://doi.org/10.1007/978-3-030-00557-3_54

  6. Kadusic, E., Zivic, N., Ruland, C., & Hadzajlic, N. (2022). A smart parking solution by integrating NB-IOT radio communication technology into the core IOT platform. Future Internet., 14, 219. https://doi.org/10.3390/fi14080219

    Article  Google Scholar 

  7. Anand, S., & Routray, S. K. (2020). Issues and challenges in healthcare narrowband IoT. International Journal of Pharma Medicine and Biological Sciences, 9(1), 486–489. https://doi.org/10.1109/ICICCT.2017.797524

    Article  Google Scholar 

  8. Malik, H., Alam, M. M., Moullec, Y. L., & Kuusik, A. (2018). Narrow band-IoT performance analysis for healthcare applications. The Procedia Computer Science., 130, 1077–1083. https://doi.org/10.1016/j.procs.2018.04.156

    Article  Google Scholar 

  9. Vinny Mary, A., & Jerine, S. (2020). Wireless body area network transmissions for iot-based healthcare network: A review. In IWCASME 2020 IOP Conf. Series: Materials Science and Engineering (Vol. 983, p. 012017). https://doi.org/10.1088/1757-899X/983/1/012017

  10. Akram, P. S., Ramesha, M., Valiveti, S. A. S., Sohail, S., & Rao, K. T. S. S. (2021). IoT based remote patient health monitoring system. In 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 1519–1524). https://doi.org/10.1109/ICACCS51430.2021.9441874

  11. Rasika. P., & Sobin C. C. (2019). An efficient security enhanced NB-IoT connections in hospitals. IJISET - International Journal of Innovative Science, Engineering & Technology, 6(6).

  12. Amrutha, B. R, Anusha, S., Harshitha, D. S, ArunKumar, S., & Nadimpalli Rajkumar. (2020). IoT based automatic handling operation theatre using ARM7 processor. International Research Journal of Engineering and Technology (IRJET), 07.

  13. Thitapa, P., Jenjirataworn, A., & Visitsattapongse, S. (2020). Healthcare data transmission by using NB-IoT. International Journal of Pharma Medicine and Biological Sciences, 9(1).

  14. Chakrapani, A. (2020). NB-IoT uplink receiver design and performance study. IEEE Internet of Things Journal, 7(3), 2469–2482. https://doi.org/10.1109/JIOT.2019.2957641

    Article  Google Scholar 

  15. Olejniczak, A., Błaszkiewicz, O., Cwalina, K. K., Rajchowski, P., & Sadowski, J. (2021). Software-defined NB-IoT uplink framework—The design, implementation and use cases. Sensors, 21, 8234. https://doi.org/10.3390/s21248234

    Article  Google Scholar 

  16. Basma, H. M., Taha, A., Shawky, A., Ahmed, E., Mohamed, A., Mohsen, M., Samy, R., ELHosiny, A., Ibrahim, A., & Mostafa, H. (2020). Design of the baseband physical layer of NarrowBand IoT LTE uplink digital transmitter. Journal of Circuits, Systems, and Computers, 29(7), 16. https://doi.org/10.1142/S021812662050111X

    Article  Google Scholar 

  17. Bas, J., & Dowhuszko, A. A. (2022). End-to-end performance of an uplink NB-IoT transmission relayed on a low-altitude UAV platform with non-orthogonal single-carrier FDMA in the optical wireless backhaul link. Mobile Networks and Applications. https://doi.org/10.1007/s11036-022-01991-x

    Article  Google Scholar 

  18. Chafii, M., Bader, F., Jacques Palicot, S.C.-F.D.M.A., & with Index Modulation for M2M and IoT Uplink Applications. (2018). IEEE wireless communications and networking conference (WCNC), Apr 2018, Barcelona. Spain. ff. https://doi.org/10.1109/wcnc.2018.8377028ff.ffhal-01705717f

  19. Oruthota, U., & Tirkkonen, O. (2012). SER/BER expression for M-QAM OFDM systems with imperfect channel estimation and I/Q imbalance. Journal on Wireless Communications and Networking, 2012, 303. https://doi.org/10.1186/1687-1499-2012-303

    Article  Google Scholar 

  20. Mwakwata, C. B., Malik, H., Mahtab Alam, M., Le Moullec, Y., Parand, S., & Mumtaz, S. (2019). Narrowband Internet of Things (NB-IoT): From physical (PHY) and media access control (MAC) layers perspectives. Sensors, 19, 2613. https://doi.org/10.3390/s19112613

    Article  Google Scholar 

  21. Jewel, M. K. H., Zakariyya, R. S., & Lin, F. (2021). On channel estimation in LTE-based downlink narrowband Internet of Things systems. Electronics, 10, 1246. https://doi.org/10.3390/electronics10111246

    Article  Google Scholar 

  22. Won, J. W., & Min Ahn, J. (2020). NB-IoT downlink channel estimation. In 2020 International Conference on Information and Communication Technology Convergence (ICTC) (p. 1739).

  23. Moon, Y., Ha, S., Park, M., Lee, D., & Jeong, J. (2018). A methodology of NB-IoT mobility optimization. Global Internet of Things Summit (GIoTS), 2018, 1–5.

    Google Scholar 

  24. YuxiangLv, Hao Qin, Zhiwei Liu, Yawen Dong, Weiyang Xu, Wenjiang Feng (2019). An efficient synchronization algorithm in OFDM-based NB-IoT systems. In 2019 IEEE Intlernational Conference on Dependable, Autonomic and Secure Computing.

  25. Ferreira, G., Paim, G., Rocha, L. M. G., Santana, G. M., Neuenfeld, R. H., Costa, E. A. C., & Bampi, S. (2021). Low‐power fast Fourier transform hardware architecture combining a split‐radix butterfly and efficient adder compressors. IET Computers & Digital Techniques, 15(3), 230–240. https://doi.org/10.1049/cdt2.12015

  26. Sharma, P., Bliss, D. W., Chair Chaitali Chakrabarti, & McGiffen, T. (2017). Low-power physical-layer design for LTE based very narrow band IoT (VNB - IoT) communication. Arizona State University.

  27. Kanj, M., Savaux, V., & Le Guen, M. (2020). A tutorial on NB-IoT Physical Layer Design. Communications Surveys and Tutorials, IEEE Communications Society, Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/COMST.2020.3022751ff

  28. Di Nuzzo, F., Brunelli, D., Polonelli, T., & Benini, L. (2021). Structural health monitoring system with narrowband IOT and MEMS sensors. IEEE Sensors Journal, 21(14), 16371–16380. https://doi.org/10.1109/JSEN.2021.3075093

    Article  Google Scholar 

  29. Wang, Y., & Zhu, H. (2018). A low-complexity method of NB-IoT identification. In 2018 IEEE 4th International Conference on Computer and Communications.

  30. Feltrin, L., et al. (2019). Narrowband IOT: A survey on downlink and uplink perspectives. IEEE Wireless Communications, 26(1), 78–86. https://doi.org/10.1109/MWC.2019.1800020

    Article  MathSciNet  Google Scholar 

  31. Takeda, K., Xu, H., Kim, T., Schober, K., & Lin, X. (2020). Understanding the heart of the 5G air interface: An overview of physical downlink control channel for 5G new radio. IEEE Communications Standards Magazine, 4(3), 22–29. https://doi.org/10.1109/MCOMSTD.001.1900048

    Article  Google Scholar 

  32. Rakibul Alam, Md, & Ferdous, J. (2018). Implementation of downlink physical channels and channel estimation for long-term evolution (LTE). International Journal of Engineering Research and Application, 8(2), 45–49.

    Google Scholar 

  33. Bhart, A., & Mishra, P. (2022). A technical report on “Testing Techniques for NB-IOT Physical Layer”.

  34. Luján, E., Zuloaga Mellino, J. A., Otero, A. D., Vega, L. R., Galarza, C. G., & Mocskos, E. E. (2020). Extreme coverage in 5G narrowband IOT: A LUT-based strategy to optimize shared channels. IEEE Internet of Things Journal, 7(3), 2129–2136. https://doi.org/10.1109/JIOT.2019.2959552

    Article  Google Scholar 

  35. Marini, R., Mikhaylov, K., Pasolini, G., & Buratti, C. (2022). Low-power wide-area networks: Comparison of LoRaWAN and NB-IOT performance. IEEE Internet of Things Journal, 9(21), 21051–21063. https://doi.org/10.1109/JIOT.2022.3176394

    Article  Google Scholar 

  36. Gnanaselvam, R., & Vasanthi, M. S. (2021). Link adaptation for coverage enhancement in NB-IOT”. xIlkogretim Online - Elementary Education Online 20(1), 2464–2471. https://doi.org/10.17051/ilkonline.2021.01.277

  37. Zuloaga Mellino, A., Luján, E., Otero, A. D., Mocskos, E. E., Vega, L. R., Galarza, C. G., & “Lite NB-IOT Simulator for Uplink Layer". (2019). XVIII Workshop on Information Processing and Control (RPIC). Salvador, Brazil, 2019, 286–291. https://doi.org/10.1109/RPIC.2019.8882144

    Article  Google Scholar 

  38. Ahmad, N. A., & Abdul Razak, N. I. (2019). Performance of narrow-band Internet of Things (NB-IOT) based on repetition of downlink physical channel. In 2019 26th International Conference on Telecommunications (ICT), Hanoi, Vietnam (pp. 506–509). https://doi.org/10.1109/ICT.2019.8798776.

  39. Kanj, M., Savaux, V., & Le Guen, M. (2020). A tutorial on NB-IOT physical layer design. IEEE Communications Surveys & Tutorials, 22(4), 2408–2446. https://doi.org/10.1109/COMST.2020.3022751

    Article  Google Scholar 

  40. Li, H. (2020). Principle of OFDM and multi-carrier modulations. In Shen, X., Lin, X., & Zhang, K. (Eds.), Encyclopedia of wireless networks. Springer. https://doi.org/10.1007/978-3-319-78262-1_164

  41. Qin, A., Tang, R., Wu, P., Xia, M., & “An Efficient Npusch Receiver Design For NB-IOT System”. (2020). IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Antwerp, Belgium, 2020, 1–5. https://doi.org/10.1109/VTC2020-Spring48590.2020.9128481

  42. Yu, Y.-J. (2021). NPDCCH period adaptation and downlink scheduling for NB-IOT networks. IEEE Internet of Things Journal, 8(2), 962–975. https://doi.org/10.1109/JIOT.2020.3010532

    Article  Google Scholar 

  43. Reddy, M. P., Rao, G. K., Kumar, D. H., et al. (2022). Uplink coverage enhancements for extremely large-cell sites. Journal on Wireless Communications and Networking, 2022, 57. https://doi.org/10.1186/s13638-022-02133-3

    Article  Google Scholar 

  44. Ugwuanyi, S., Paul, G., & Irvine, J. (2021). Survey of IOT for developing countries: Performance analysis of LoRaWAN and cellular NB-IOT networks. Electronics, 10, 2224. https://doi.org/10.3390/electronics10182224

    Article  Google Scholar 

  45. Staniec, K., Kucharzak, M., Jóskiewicz, Z., & Chowánski, B. (2020). Measurement-based investigations of the NB-IOT uplink performance at boundary propagation conditions. Electronics, 9, 1947. https://doi.org/10.3390/electronics9111947

    Article  Google Scholar 

  46. Yassine, F., El Helou, M., Lahoud, S., & Bazzi, O. (2022). le energy-efficient uplink scheduling in narrowband IOT. Sensors, 22, 7744. https://doi.org/10.3390/s22207744

    Article  Google Scholar 

  47. Safiu Abiodun Gbadamosi, Gerhard P. Hancke, And Adnan M. Abu-Mahfouz, “Building Upon NB-IOT Networks: A Roadmap Towards 5G New Radio Networks”, IEEE ACCESS Vol. 8, 2020

  48. Jouhari, M., Amhoud, E.-M., Saeed, N., & Alouini, M.-S. (2022). A survey on scalable LoRaWAN for massive IOT: Recent advances, potentials, and challenges. abs/2202.11082.

  49. Mordecai F. Raji, JianPing Li, Amin Ul Haq, Victor Ejianya, Jalaluddin Khan, Asif Khan, Mudassir Khalil, Amjad Ali, Ghufran A. khan, Mohammad Shahid, Bilal Ahamad, Amit Yadav, and Imran Memon “A New Approach for Enhancing the Services of the 5G Mobile Network and IOT-Related Communication Devices Using Wavelet-OFDM and Its Applications in Healthcare”, Hindawi Scientific Programming Volume 2020, Article ID 3204695, 13 pages DOI: https://doi.org/10.1155/2020/320469

  50. Bembe, M. J., Abu-Mahfouz, A. M., Masonta, M. T., & Ngqondi, T. (2019). A survey on low-power wide area networks for IOT applications. Telecommunication Systems, 71, 249–274. https://doi.org/10.1007/s11235-019-00557-9

    Article  Google Scholar 

  51. Krug, S., & O’Nils, M. (2019). Modeling and comparison of delay and energy cost of IOT data transfers. IEEE Access, 7, 58654–58675. https://doi.org/10.1109/ACCESS.2019.2913703

    Article  Google Scholar 

  52. Andres-Maldonado, P., Ameigeiras, P., Prados-Garzon, J., Ramos-Munoz, J. J., Navarro-Ortiz, J., Lopez-Soler, J. M., & “Analytic Analysis of Narrowband IOT Coverage Enhancement Approaches,”,. (2018). Global Internet of Things Summit (GIOTS). Bilbao, Spain, 2018, 1–6. https://doi.org/10.1109/GIOTS.2018.8534539

    Article  Google Scholar 

  53. Sørensen, A., Wang, H., Jeróme Remy, M., Kjettrup, N., & Sørensen, R. B. (2022). Modelling and experimental validation for battery lifetime estimation in NB-IOT and LTE-M. IEEE Internet of Things Journal., 9, 1–1. https://doi.org/10.1109/JIOT.2022.3152173

    Article  Google Scholar 

  54. Bharath, G. S., Hitesh, N., Bukkapatnam, M., & Jadhav, S. D. (2022). NB-IOT based road accident alert system. International Journal of Engineering Research & Technology (IJERT), 11(3), 4.

    Google Scholar 

  55. Pitchaiah, T., & Ravi Sekhar, Y. (2020). Performance analysis of narrowband IOT downlink channels. Journal of Green Engineering, 10(3), 998–1017.

    Google Scholar 

  56. Shi, Z., et al. (2022). Block error rate analysis of short-packet mobile-to-mobile communications over correlated cascaded fading channels. IEEE Transactions on Vehicular Technology, 71(4), 4087–4101. https://doi.org/10.1109/TVT.2022.3148247

    Article  Google Scholar 

  57. Nguyen, N. H., Berscheid, B., & Nguyen, H. H. (2019). Fast-OFDM with index modulation for NB-IoT. IEEE Communications Letters, 23(7), 1157–1160. https://doi.org/10.1109/LCOMM.2019.2917684

    Article  Google Scholar 

  58. Mohit, K., Kumar, A., Verma, S., Bhattacharya, P., Ghimire, D., Kim, S.-H., & Hosen, A. S. (2023). Healthcare Internet of Things (H-IoT): Current trends, future prospects, applications, challenges, and security issues. MDPI Electronics, 12(9), 2050. https://doi.org/10.3390/electronics12092050

    Article  Google Scholar 

  59. Majumdar, P., Bhattacharya, D., Mitra, S., et al. (2023). Application of green IoT in agriculture 4.0 and beyond: Requirements, challenges and research trends in the era of 5G, LPWANs and Internet of UAV Things. Wireless Personal Communications, 131, 1767–1816. https://doi.org/10.1007/s11277-023-10521-1

    Article  Google Scholar 

Download references

Acknowledgements

I thank to my co-author and PhD supervisor for their expertise and assistance throughout all aspects of my study and for their guidance in writing the manuscript I also thankful to wireless personal communications team and their reviewer to suggest me various relevant point to make this manuscript effective.

Funding

There is no funding for this research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) Conception and design, or analysis and interpretation of the data, (b) Drafting the article or revising it critically for important intellectual content, and (c) Approval of the final version.

Corresponding author

Correspondence to Amrita Khera.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval and Consent to Participate

The authors have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript. The content in this manuscript is unpublished and submitted in only this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khera, A., Singh, J.K. Optimal Physical Shared Channels NB-IOT Design BLER Assessment, for Cellular LTE WAN Network in Smart Healthcare. Wireless Pers Commun 132, 2171–2202 (2023). https://doi.org/10.1007/s11277-023-10714-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10714-8

Keywords

Navigation