Skip to main content

Advertisement

Log in

Efficient Crest Factor Reduction Techniques for 5G NR: A Review and a Case Study

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The rapid worldwide growth in multimedia-based applications has incited a burning demand for a reliable, affordable, high speed, and high mobility data access network which leads to the evolution of 5th generation new radio (5G NR). It uses orthogonal frequency division multiplexing (OFDM) with massive multiple-input multiple-output (mMIMO) radio systems to fulfill this requirement. However, one teething problem with this technique is the high crest factor (CF) which becomes more severe for 5G NR due to a large number of subcarriers, complex modulation schemes, and broad bandwidth. Consequently, this problem directly disturbs the trade-off between linearity and power efficiency of power amplifier (PA) and results in high power consumption. As a remedy, many CF reduction (CFR) techniques have been found in the literature. This paper provides an assortation of all these techniques from the most recent research papers and their concise review along with mathematical formulation. This paper also discusses a comparative analysis of these techniques and challenges related to the 5G NR. Even though no single CFR technique has been found suitable with all design aspects, it has been observed in our review analysis that mixed and multi-iterative signal distortion-based CFR (SD-CFR) techniques are more appealing and efficient in performance for 5G radio by avoiding low data throughput, over-processing, computational complexity, and implementational challenges. To support our analysis, this paper presents a case study of combined SD-CFR methods with computer-based modeling and MATLAB simulation results, which can also meet 3rd generation partnership project (3GPP) specifications for 5G NR effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. PwC report. (2021). Data consumption by Global Entertainment and media outlook 2021–2025. https://www.pwc.com/gx/en/industries/tmt/media/outlook/segment-findings.html?WT.mc_id=CT1-PL52-DM2-TR2-LS4-ND30-TTA9-CN_GEMO-2021-segments-two

  2. PwC report. (2021). Power shifts: Altering the dynamics of the E&M industry. https://www.pwc.com/gx/en/industries/tmt/media/outlook.html

  3. Qualcomm. (2015). Everything you need to know about 5G. White paper. https://www.qualcomm.com/5g/what-is-5g.

  4. Ericsson. (2015). Advanced antenna system for 5G networks. White paper. https://www.ericsson.com/en/reports-and-papers/white-papers/advanced-antenna-systems-for-5g-networks

  5. European Commission. (2013). Horizon 2020-Work Program 2014–2015. Leadership in enabling and industrial technologies information and communication technologies. https://ec.europa.eu/digitalagenda/sites/digital-agenda/files/h2020LEIT-ICTWP.

  6. Wang, Y., Xu, J., & Jiang, L. (2014). Challenges of system-level simulations and performance evaluation for 5G wireless networks. IEEE Access, 2 (1553–1561). 2014. https://doi.org/10.1109/ACCESS.2014.2383833.

  7. Chávez-Santiago, R., Szydełko, M., Kliks, A., et al. (2015). 5G: The convergence of wireless communications. Wireless Personal Communications, 83, 1617–1642. https://doi.org/10.1007/s11277-015-2467-2

    Article  Google Scholar 

  8. Qualcomm. (2016). 5G research on Waveform and Multiple Access Techniques. White paper. https://www.qualcomm.com/documents/5g-research-waveform-and-multiple-access-techniques.

  9. Chataut, R., & Akl, R. (2020). Massive MIMO systems for 5G and beyond networks-overview, recent trends, challenges, and future research direction. Sensors, 20(10), 2753. https://doi.org/10.3390/s20102753

    Article  Google Scholar 

  10. Schwartz, M. (2005). Mobile Wireless Communications. Cambridge University Press.

    Google Scholar 

  11. Prasad Ramjee (2004). OFDM for wireless personal communications. Artech House. ISBN: 1580537995, 9781580537995.

  12. Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. Wiley-IEEE press. ISBN-10:0470825618.

  13. ETSI. (2019). 5G NR Base station (BS) radio transmission and reception. ETSI Technical Specification ETSI 3GPP TS 38.104 version 15.5.0 Release 15.

  14. Bernini, M. (2016). An efficient Hardware implementation of the Peak Cancellation Crest Factor Reduction Algorithm. Master’s Thesis. KTH Information and Communication Technology, Stockholm, Sweden.

  15. Xilinx. (2018). PG-097 Crest Factor Reduction IP. Product guide.

  16. Han, S. H., & Lee, J. H. (2005). An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wireless Commun., 12(2), 56–65. https://doi.org/10.1109/MWC.2005.1421929

    Article  Google Scholar 

  17. Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268. https://doi.org/10.1109/TBC.2008.915770

    Article  Google Scholar 

  18. Lim, D. W., Heo, S. J., & No, J. S. (2009). An overview of peak-to-average power ratio reduction schemes for OFDM signals. Journal of Communications and Networks, 11(3), 229–239. https://doi.org/10.1109/JCN.2009.6391327

    Article  Google Scholar 

  19. Rahmatallah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: Aa survey and taxonomy. IEEE Communications Surveys & Tutorials, 15(4), 1567–1592. https://doi.org/10.1109/SURV.2013.021313.00164

    Article  Google Scholar 

  20. Sandoval, F., Poitau, G., & Gagnon, F. (2017). Hybrid peak-to-average power ratio reduction techniques: Review and performance comparison. IEEE Access, 5, 27145–27161. https://doi.org/10.1109/ACCESS.2017.2775859

    Article  Google Scholar 

  21. Texas Instruments. (2013). Application Note. FFT Implementation on the TMS320VC5505, TMS320C5505, and TMS320C5515 DSPs. https://www.ti.com/lit/an/sprabb6b/sprabb6b.pdf?ts=1644322314234&ref_url=https%253A%252F%252Fwww.google.com%252F

  22. Xilinx. (2018). UG-269 RF Dataconverter IP. User’s guide.

  23. 5G Americas. (2017). Whitepaper. LTE to 5G: Cellular and broadband innovation. http://www.rysavy.com.

  24. Tellambura, C. (2001). Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers. IEEE Communications Letters, 5(5), 185–187. https://doi.org/10.1109/4234.922754

    Article  Google Scholar 

  25. Sharif, M., & Khalaj, B. H. (2001). Peak to mean envelope power ratio of oversampled OFDM signals: An analytical approach. In: Proceedings of IEEE International Conference on Communications (ICC), (pp. 1476–1480). https://doi.org/10.1109/ICC.2001.937166.

  26. van Nee, R., & de Wild, A. (1998). Reducing the peak-to-average power ratio of OFDM. In: Proceedings of IEEE Vehicular Technology Conference, (pp. 2072–2076). https://doi.org/10.1109/VETEC.1998.686121.

  27. Ochiai, H., & Imai, H. (2001). On the distribution of the peak-to-average power ratio in OFDM signals. IEEE Transactions on Communications, 49(2), 282–289. https://doi.org/10.1109/26.905885

    Article  MATH  Google Scholar 

  28. Wei, S., Goeckel, D. L., & Kelly, P. E. (2002). A modern extreme value theory approach to calculating the distribution of the peak-to-average power ratio in OFDM systems. In: Proceedings of IEEE International Conference on Communications (ICC),, (vol. 3, pp. 16861690). https://doi.org/10.1109/ICC.2002.997136.

  29. Shah, B., Dalwadi, G., Shah, H., & Kothari, N. (2018). Power-efficient LTE Macro eNB: A comprehensive survey. Telecommunications and Radio engineering, 77(16), 1441–1462. https://doi.org/10.1615/TelecomRadEng.v77.i16.40

    Article  Google Scholar 

  30. Shah, B., Thakker, N., Dalwadi, G., & Kothari, N. (2015). Modified output combining 3-Stage Doherty power amplifier design for LTE Micro eNB. International Journal of Wireless and Microwave Technologies, 5(5), 10–24. https://doi.org/10.5815/ijwmt.2015.05.02

    Article  Google Scholar 

  31. Bertenyi, B., Nagata, S., Kooropaty, H., Zhou, X., Chen, W., & Kim, Y., et. al. (2018). 5G NR radio interface. Journal of ICT, 6(1&2), 31–58. https://doi.org/10.13052/jicts2245-800X.613

  32. Cripps, S. C., (1999). RF Power Amplifier for Wireless Communications. Artech House.

  33. Mistry, H. N., (2006). Implementation of a peak windowing algorithm in WCDMA. Master’s Thesis, Simon Fraser Univ., Canada.

  34. Shah, B., Dalwadi, G., Shah, H., & Kothari, N. (2019). Cost-optimized energy-efficient power amplifier for TD-LTE outdoor Pico Base station. IETE Journal of Research, 1–10. https://doi.org/10.1080/03772063.2019.1649206.

  35. Jones, A. E., Wilkinson, T. A., & Barton, S. K. (1994). Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme. IEE Electronic Letters, 30(22), 2098–2099. https://doi.org/10.1049/el:19941423

    Article  Google Scholar 

  36. Wulich, D. (1996). Reduction of peak to mean ratio of multicarrier modulation using cyclic coding. IEE Electronic Letters, 32(29), 432–433. https://doi.org/10.1049/el:19960286

    Article  Google Scholar 

  37. Zhang, Y., Yongacoglu, A., Chouinard, J., & Zhang, L., et. al. (1999). OFDM peak power reduction by sub-block-coding and its extended versions. Proc. IEEE Vehicular Technology Conference (VTC), (vol. 1, pp. 695–699). https://doi.org/10.1109/VETEC.1999.778254.

  38. Jiang, T., & Zhu, G. (2004). Complement block coding scheme for reducing peak-to-average power ratio of OFDM systems. J. Electronics (China), 21(5), 413–420. https://doi.org/10.1109/MCOM.2005.1509967

    Article  Google Scholar 

  39. Yang, K., & Chang, S. (2003). Peak-to-average power control in OFDM using standard arrays of linear block codes. IEEE Communications Letters, 7(4), 174–176. https://doi.org/10.1109/LCOMM.2003.811204

    Article  Google Scholar 

  40. Liu, Z., Xin, Y., & Giannakis, G. B. (2003). Linear constellation precoding for OFDM with maximum multipath diversity and coding gains. IEEE Transactions on Communications, 51(3), 416–427. https://doi.org/10.1109/TCOMM.2003.809791

    Article  Google Scholar 

  41. Sghaier, M., Abdelkefi, F., & Siala, M. (2013). Efficient embedded signaling through Alamouti STBC precoders in MIMO-OFDM systems. In: IEEE Wireless Communications and Networking Conference (WCNC), (pp. 4053–4058). https://doi.org/10.1109/WCNC.2013.6555226.

  42. Singh, R., Soni, G. K., Jain, R., Sharma, A.,et. al. (2021). PAPR Reduction for OFDM Communication System Based on ZCT-Pre-coding Scheme. In: Second International Conference on Electronics and Sustainable Communication Systems (ICESC), (pp. 555–558). https://doi.org/10.1109/ICESC51422.2021.9532776.

  43. Hao, M. J., & Lai, C. H. (2010). Precoding for PAPR reduction of OFDM signals with minimum error probability. IEEE Transactions on Broadcasting, 56(1), 120–128. https://doi.org/10.1109/TBC.2009.2034512

    Article  Google Scholar 

  44. Zayani, R., & Roviras, D. (2021). Low-complexity linear precoding for low-PAPR massive MU-MIMO-OFDM downlink systems. International Journal of Communication Systems, 34(12), 1–20. https://doi.org/10.1002/dac4889

    Article  Google Scholar 

  45. Muta, O., & Akaiwa, Y. (2008). Weighting factor estimation method for peak power reduction based on adaptive flipping of parity bits in turbo-coded OFDM systems. IEEE Transactions on Vehicular Technology, 57(6), 3551–3562. https://doi.org/10.1109/TVT.2008.918729

    Article  Google Scholar 

  46. Daoud, O., & Alani, O. (2009). Reducing the PAPR by utilisation of the LDPC code. IET Communications, 3(4), 520–529. https://doi.org/10.1049/iet-com.2008.0344

    Article  Google Scholar 

  47. Al-akaidi, M., Daoud, O., & Linfoot, S. (2007). A new turbo coding approach to reduce the peak-to-average power ratio of a multi-antenna-OFDM. International Journal of Mobile Communications, 5(3), 357–369. https://doi.org/10.1504/IJMC.2007.012399

    Article  Google Scholar 

  48. Golay, M. (1961). Complementary series. IEEE Transactions on Information Theory, 7(2), 82–87. https://doi.org/10.1109/TIT.1961.1057620

    Article  MathSciNet  Google Scholar 

  49. Chen, C. (2016). Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM. IEEE Transactions on Information Theory, 62(12), 7538–7545. https://doi.org/10.1109/TIT.2016.2613994

    Article  MathSciNet  MATH  Google Scholar 

  50. Davis, J. A., & Jedwab, J. (1997). Peak-to-mean power control and error correction for OFDM transmission using golay sequences and reedmuller codes. IEE Electronic Letters., 33(4), 267–268. https://doi.org/10.1109/18.796380

    Article  Google Scholar 

  51. Zi-qi, L., Jin-jie, M., Deng-peng, H., Xu-chi, S., & Xiao-bai, L. (2014). Peak-to-average power ratio reduction for integration of radar and communication systems based on OFDM Signals with Block Golay coding. Journal of Radars, 3(5), 548–555. https://doi.org/10.3724/SP.J.1300.2014.14059

    Article  Google Scholar 

  52. Chen, L., & Hu, X. (2009). Peak-to-Average Power Ratio Reduction of an OFDM Signal Using Signal Scrambling. In: 2nd International Congress on Image and Signal Processing, (pp. 1–4). https://doi.org/10.1109/CISP.2009.5302974.

  53. Bauml, R., Robert, F., & Johannes, B. H. (1996). Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters, 32, 2056–2057. https://doi.org/10.1049/el:19961384

    Article  Google Scholar 

  54. Singal, A., & Kedia, D. (2020). Performance analysis of MIMO-OFDM system using SLM with additive mapping and U2 phase sequence for PAPR reduction. Wireless Personal Communications, 111, 1377–1390. https://doi.org/10.1007/s11277-019-06921-x

    Article  Google Scholar 

  55. Liang, H., & Jiang, H. (2019). The Modified Artificial Bee Colony-Based SLM Scheme for PAPR Reduction in OFDM Systems. In: International Conference on Artificial Intelligence in Information and Communication (ICAIIC), (pp. 504–508). https://doi.org/10.1109/ICAIIC.2019.8669020.

  56. Alameri, T., Ali, N. S., Attiah, M. L., et al. (2021). Low complexity rotation algorithm for PAPR reducing performance in partial transmits sequence. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-09400-4

    Article  Google Scholar 

  57. Jawhar, Y. A., et al. (2019). A review of partial transmit sequence for PAPR reduction in the OFDM systems. IEEE Access, 7, (18021–18041). https://doi.org/10.1109/ACCESS.2019.2894527.

  58. Shuyan, D., Ruo, S., Shibao, L., & Zhaozhi, G. (2013). An optimization algorithm for PAPR reduction in OFDM system based on Tabu search. In: IEEE Eighth International Conference on Networking, Architecture and Storage, (pp. 317–320). https://doi.org/10.1109/NAS.2013.51.

  59. Joshi A., Garg A., Garg E., & Garg N. (2019) PAPR Reduction Analysis of OFDM Systems Using GA-, PSO-, and ABC-Based PTS Techniques. Advances in Signal Processing and Communication. Lecture Notes in Electrical Engineering, 526. https://doi.org/10.1007/978-981-13-2553-3_15

  60. Hou, J., Tellambura, C., & Ge, J. (2012). Tone injection for PAPR reduction using parallel tabu search algorithm in OFDM systems. In: IEEE Global Communications Conference (GLOBECOM), (pp. 4899–4904). https://doi.org/10.1109/GLOCOM.2012.6503895.

  61. Hou, J., Tellambura, C., & Ge, J. (2013). Clipping noise-based tone injection for PAPR reduction in OFDM systems. In: IEEE International Conference on Communications (ICC), (pp. 5759–5763). https://doi.org/10.1109/ICC.2013.6655514.

  62. Wang, W., Hu, M., Yi, J., Zhang, H., et al. (2018). Improved cross-entropy-based tone injection scheme with structured constellation extension design for PAPR reduction of OFDM signals. IEEE Transactions on Vehicular Technology, 67(4), 3284–3294. https://doi.org/10.1109/TVT.2017.2780119

    Article  Google Scholar 

  63. Hu, M., Wang, W., Cheng, W., & Zhang, H. (2021). Initial probability adaptation enhanced cross-entropy-based tone injection scheme for PAPR reduction in OFDM systems. IEEE Transactions on Vehicular Technology, 70(7), 6674–6683. https://doi.org/10.1109/TVT.2021.3078736

    Article  Google Scholar 

  64. Hou, J., Ge, J., & Gong, F. (2015). Tone reservation technique based on peak-windowing residual noise for PAPR reduction in OFDM systems. IEEE Transactions on Vehicular Technology, 64(11), 5373–5378. https://doi.org/10.1109/TVT.2014.2378811

    Article  Google Scholar 

  65. Abdelali, H., Ghennioui, H., El Kamili M., & Firdaoussi, M. (2019). New PAPR reduction technique combining the Tone Reservation based on PCG algorithm with Clipping. In: International Conference on Wireless Networks and Mobile Communications (WINCOM), (pp. 1–6). https://doi.org/10.1109/WINCOM47513.2019.8942490.

  66. Renuka, N., & Satya Sairam, M. (2018). Improved tone reservation PAPR reduction algorithm in NC-OFDM/OQAM system. Arabian Journal for Science and Engineering, 43, 4347–4352. https://doi.org/10.1007/s13369-017-3023-z

    Article  Google Scholar 

  67. Xiao, Y., He, X., Hu, S., & Li, S. (2012). Variable interleaver allocation for downlink OFDM-IDMA. Wireless Personal Communications, 67, 359–366. https://doi.org/10.1007/s11277-011-0382-8

    Article  Google Scholar 

  68. Aimer Y., Bouazza B.S., Bachir S., & Duvanaud C., et. al. (2018). PAPR reduction using interleavers with downward compatibility in OFDM cystems. Communications in Computer and Information Science, 849. https://doi.org/10.1007/978-981-13-0896-3_60.

  69. Puspitaningayu, P., & Hendrantoro, G. (2014). Performance of anti-jamming techniques with bit interleaving in OFDM-based tactical communications. In: Proc. 6th Int. Conf. Inf. Technol. Elect. Eng. (ICITEE), (pp. 15). https://doi.org/10.1109/ICITEED.2014.7007927.

  70. Li, C. M., & Cheng, Y. Y. (2013). A low complexity partition dummy sequence insertion PAPR reduction method for the OFDM system. Wireless Personal Communications, 68, 949–961. https://doi.org/10.1007/s11277-011-0492-3

    Article  Google Scholar 

  71. Maivan, L., & Nguyentrong, T. (2019). New binary particle swarm optimization on dummy sequence insertion method for nonlinear reduction in optical direct-detection orthogonal frequency division multiplexing system. Journal of Optics, 48, 36–42. https://doi.org/10.1007/s12596-019-00512-6

    Article  Google Scholar 

  72. Sghaier, M., Abdelkefi, F., & Siala, M. (2014). An efficient blind dummy zeros insertion and SLM scheme for PAPR reduction in OFDM systems. In: IEEE Wireless Communications and Networking Conference (WCNC), (pp. 747–752). https://doi.org/10.1109/WCNC.2014.6952161.

  73. Braithwaite, R. N. (2013). A combined approach to digital predistortion and crest factor reduction for the linearization of an RF power amplifier. IEEE Transactions on Microwave Theory and Techniques, 61(1), 291–302. https://doi.org/10.1109/TMTT.2012.2222911

    Article  Google Scholar 

  74. Wang, S., Roger, M., Sarrazin, J., & Lelandais-Perrault, C. (2020). A joint crest factor reduction and digital predistortion for power amplifiers linearization based on clipping-and-bank-filtering. IEEE Transactions on Microwave Theory and Techniques, 68(7), 2725–2733. https://doi.org/10.1109/TMTT.2019.2956036

    Article  Google Scholar 

  75. Wang, S., Roger, M., & Lelandais-Perrault, C. (2019). Impacts of crest factor reduction and digital predistortion on linearity and power efficiency of power amplifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(3), 407–411. https://doi.org/10.1109/TCSII.2018.2855084

    Article  Google Scholar 

  76. Armstrong, J. (2002). Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electronics Letters, 38(5), 246–247. https://doi.org/10.1049/el:20020175

    Article  Google Scholar 

  77. Enzinger, H., Freiberger, K., & Vogel, C. (2018). Competitive linearity for envelope tracking: Dual-band crest factor reduction and 2D-vectorswitched digital predistortion. IEEE Microwave Magazine, 19(1), 69–77.

    Article  Google Scholar 

  78. Gökceli, S., et al. (2021). Novel iterative clipping and error filtering methods for efficient PAPR reduction in 5G and beyond. IEEE Open Journal of the Communications Society, 2, 48–66. https://doi.org/10.1109/OJCOMS.2020.3043598

    Article  Google Scholar 

  79. Musabe, R., Lionel, M.B., Mugongo Ushindi, V. et al. (2019). PAPR reduction in LTE network using both peak windowing and clipping techniques. Journal of Electrical Systems and Inf ormation Technology, 6(3). https://doi.org/10.1186/s43067-019-0004-1.

  80. Fidele, M., Damien, H., & Eric, N. (2020). Effect of Window Size on PAPR Reduction in 4G LTE Network Using Peak Windowing Algorithm in Presence of Non-linear HPA. In: IEEE 5th International Conference on Signal and Image Processing (ICSIP), (pp. 1128–1133). https://doi.org/10.1109/ICSIP49896.2020.9339272.

  81. Song, J., & Ochiai, H. (2015). A low-complexity peak cancellation scheme and its FPGA implementation for peak-to-average power ratio reduction. Journal on Wireless Communications and Networking, 85. https://doi.org/10.1186/s13638-015-0319-0.

  82. Kageyama, T., Muta, O., & Gacanin, H. (2020). Enhanced peak cancellation with simplified in-band distortion compensation for Massive MIMO-OFDM. IEEE Access, 8, 73420–73431. https://doi.org/10.1109/ACCESS.2020.2986280

    Article  Google Scholar 

  83. Wang, Y., Wang, L.-H., Ge, J., Ai, B., et al. (2012). An efficient nonlinear companding transform for reducing PAPR of OFDM signals. IEEE Transactions on Broadcasting, 58(4), 677–684. https://doi.org/10.1109/TBC.2012.2198976

    Article  Google Scholar 

  84. Xing, Z., Liu, K., Huang, K., Tang, B., & Liu, Y. (2020). Novel PAPR reduction scheme based on continuous nonlinear piecewise companding transform for OFDM systems. China Communications, 17(9), 177–192. https://doi.org/10.23919/JCC.2020.09.014.

  85. Jiang, T., Yang, Y., & Song, Y.-H. (2005). Exponential companding technique for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting, 51(2), 244–248.

    Article  Google Scholar 

  86. You, Z., Lu, I-T., Yang, R., & Li, J. (2013). Flexible companding design for PAPR reduction in OFDM and FBMC systems. International Conference on Computing, Networking and Communications (ICNC), (pp. 408–412). https://doi.org/10.1109/ICCNC.2013.6504118.

  87. Liu, K., Wang, L., & Liu, Y. (2020). A new nonlinear companding algorithm based on tangent linearization processing for PAPR reduction in OFDM systems. China Communications, 17(8), 133–146. https://doi.org/10.23919/JCC.2020.08.011.

  88. Markos, A.Z., Bathich, K., Tanany, A.A., & Gruner, D., et al. (2011). Design of a 120 W balanced GaN Doherty power amplifier. In: Microwave Conference (GeMIC), (Vol. 1, no. 44, pp. 1–4).

  89. Piazzon, L., Colantonio, P., Giannini, F., & Giofre, R. (2013). Asymmetrical Doherty power amplifier with an integrated drive stage in auxiliary path. International Journal of RF and Microwave Computer-Aided Engineering, 24(4), 498–507. https://doi.org/10.1002/mmce.20791

    Article  Google Scholar 

  90. Sajedin, M., Elfergani, I. T. E., Rodriguez, J., Abd-Alhameed, R., et al. (2019). A survey on RF and microwave Doherty power amplifier for mobile handset applications. Electronics, 8(6), 717. https://doi.org/10.3390/electronics8060717

    Article  Google Scholar 

  91. Bathich, K. (2013). Analysis and design of efficiency-enhancement microwave power amplifiers using the Doherty technique. Master’s thesis, Berlin Institute of Technologies, Berlin.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Dalwadi.

Ethics declarations

Conflict of interest

We declare that we have not taken any kind of funding support from any organization for this work. Also, we do not have any conflict of interest to declare. All data supporting the findings of this study are available within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalwadi, G., Krishnan, N., Shah, B. et al. Efficient Crest Factor Reduction Techniques for 5G NR: A Review and a Case Study. Wireless Pers Commun 132, 1137–1175 (2023). https://doi.org/10.1007/s11277-023-10651-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10651-6

Keywords

Navigation