Skip to main content
Log in

Analog Baseband Self-Interference Canceler with Digitally Generated Replica Signal for Full Duplex

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a novel transceiver architecture for in-band full duplex radio. A transceiver for full duplex radio requires a self-interference (SI) canceler to remove the SI occurring from the transmitter to the receiver, and a full duplex transceiver generally has two SI cancelers: one at the analog RF stage and the other at the baseband stage. The output from the SI canceler at the RF stage includes much residual SI, and it decreases the number of bits allocated to the analog baseband signal at the analog-to-digital converter. A 1-tap analog baseband SI canceler that uses a replica signal including only the direct path component of the residual SI has been presented for preventing degradation. However, the architecture cannot remove the SI well due to the high Ricial K-factor. To address the problem, the presented architecture has an SI canceler at the analog baseband stage, and this canceler employs a replica signal that is output from a digital-to-analog converter. Because the replica signal is generated in the digital domain, the architecture can generate a multipath replica signal, and improved performance can be expected. Numerical and theoretical analyses are shown to validate the effectiveness of the presented architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sabharwal, A., Schniter, P., Dongning, G., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652.

    Article  Google Scholar 

  2. Annamalai, P., Bapat, J., & Das, D. (2019). A novel frequency allocation scheme for in band full duplex systems in 5G networks. IEEE Wireless Communications Letters, 8(2), 364–367.

    Article  Google Scholar 

  3. Yadav, A., Dobre, O. A., & Ansari, N. (2017). Energy and traffic aware full-duplex communications for 5G systems. IEEE Access, 5, 11278–11290.

    Article  Google Scholar 

  4. Bany Salameh, H. (2021). Quantifying the impact of time-sharing on route capacity in cognitive radio networks with full-duplex capability. IEEE Communications Letters, 25(1), 94–98.

    Article  Google Scholar 

  5. Xu, D., Yu, X., Sun, Y., Ng, D. W. K., & Schober, R. (2020). Resource allocation for IRS-assisted full-duplex cognitive radio systems. IEEE Transactions on Communications, 68(12), 7376–7394.

    Article  Google Scholar 

  6. Zhang, Y., Wu, Q., & Shikh-Bahaei, M. R. (2020). On ensemble learning-based secure fusion strategy for robust cooperative sensing in full-duplex cognitive radio networks. IEEE Transactions on Communications, 68(10), 6086–6100.

    Article  Google Scholar 

  7. Korpi, D., Riihonen, T., Syrjälä, V., Anttila, L., Valkama, M., & Wichman, R. (2014). Full-duplex transceiver system calculations: Analysis of ADC and linearity challenges. IEEE Transactions on Wireless Communications, 13(7), 3821–3836.

    Article  Google Scholar 

  8. Korpi, D., Anttila, L., Syrjälä, V., & Valkama, M. (2014). Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver. IEEE JSAC, 32(9), 1674–1687.

    Google Scholar 

  9. Syrjälä, V., Valkama, M., Anttila, L., Riihonen, T., & Korpi, D. (2014). Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex OFDM radio transceivers. IEEE Transactions on Wireless Communications, 13(6), 2977–2990.

    Article  Google Scholar 

  10. Korpi, D., Huusara, T., Choi, Y. -S., Anttila, L., Talwar, S., & Valkama, M. Digital self-interference cancellation under nonideal RF components: Advanced algorithms and measured performance. In Proceedings of IEEE SPAWC 2015 (pp. 286–290).

  11. Duarte, M., Dick, C., & Sabharwal, A. (2012). Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications, 11(12), 4296–4307.

    Article  Google Scholar 

  12. Lee, J.-H., Jung, J.-H., Kim, S.-C., & Kim, Y.-H. (2015). Analog cancellation for full-duplex wireless in multipath self-interference channels. IEICE Transactions on Communications, E98–B(4), 646–652.

    Article  Google Scholar 

  13. Huusari, T., Choi, Y. -S., Liikkanen, P., Korpi, D., Talwar, S., & Valkama, M. (2015). Wideband self-adaptive RF cancellation circuit for full-duplex radio: Operating principle and measurements. In Proceedings of the IEEE VTC2015-Spring (pp. 1–7).

  14. Fukui, T., Komatsu, K., Miyaji, Y., & Uehara, H. (2020). Analog self-interference cancellation using auxiliary transmitter considering IQ imbalance and amplifier nonlinearity. IEEE Transactions on Wireless Communications, 19(11), 7439–7452.

    Article  Google Scholar 

  15. Kolodziej, K. E., Cookson, A. U., & Perry, B. T. (2021). RF canceller tuning acceleration using neural network machine learning for in-band full-duplex systems. IEEE Open Journal of the Communications Society, 2, 1158–1170.

    Article  Google Scholar 

  16. Elsayed, M., El-Banna, A. A. A., Dobre, O. A., Shiu, W., & Wang, P. (2021). Low complexity neural network structures for self-interference cancellation in full-duplex radio. IEEE Communications Letters, 25(1), 181–185.

    Article  Google Scholar 

  17. Bernhardt, M., Gregorio, F., Cousseau, J., & Riihonen, T. (2018). Self-interference cancelation through advanced sampling. IEEE Transactions on Signal Processing, 66(7), 1721–1733.

    Article  MathSciNet  MATH  Google Scholar 

  18. Narieda, S. (2016). Antenna selection for reduction of Rician distributed self interference effects in full duplex radio. Electronics Letters, 52(3), 234–235.

    Article  Google Scholar 

  19. Péerz, J. P. A., Pueyo, S. C., & López, B. C. (2011). Automatic gain control. Springer.

    Book  Google Scholar 

  20. Murray, B. M., & Collings, I. B. (2006). AGC and quantization effects in A zero-forcing MIMO wireless system. In Proceedings of the IEEE VTC 2006-Spring (pp. 1802–1806).

  21. Narieda, S. (2014). Receiver performances considering effects of gain control and quantization in FDM-based narrowband communication systems. Wireless Personal Communications, 78(1), 741–754.

    Article  Google Scholar 

  22. Shi, K., Zhou, Y., Kelleci, B., Fischer, T. W., Serpedin, E., & Karşılayan, A. İ. (2007). Impacts of narrowband interference on OFDM-UWB receivers: Analysis and mitigation. IEEE Transactions on Signal Processing, 55(3), 1118–1128.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaufman, B., Lilleberg, J., & Aazhang, B. (2013). An analog baseband approach for designing full-duplex radios. In Proceedings of the 2013 Asilomar Conference on Signals, Systems and Computers (pp. 987–991).

  24. Kester, W. (2004). Analog-digital conversion. Analog Devices Inc.

    Google Scholar 

  25. Understanding Data Converters. (1995). Texas instruments application report SLAA013, mixed-signal products.

  26. Razavi, B. (2011). RF microelectronics (2nd ed.). Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP19K04374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusuke Narieda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narieda, S. Analog Baseband Self-Interference Canceler with Digitally Generated Replica Signal for Full Duplex. Wireless Pers Commun 126, 1769–1788 (2022). https://doi.org/10.1007/s11277-022-09821-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09821-9

Keywords

Navigation