Skip to main content

Filter Design for Self-Interference Cancellation

  • Chapter
  • First Online:
Full-Duplex Communications for Future Wireless Networks
  • 914 Accesses

Abstract

Mitigation of self-interference is the prime challenge in making full-duplex technology feasible in wireless communications. In this chapter, we first present system model of a wireless communication link including a source, full-duplex transceiver, and destination, and discuss different approaches and assumptions when building the signal model. Then we will present frequency, time, and spatial signal processing techniques to mitigate self-interference in digital baseband. We concentrate on time-domain filtering instead of frequency-domain filtering on a subcarrier basis, because time-domain filtering need not assume OFDM waveforms or synchronization between transmitted and received signals. We complement the time-domain filtering with spatial filters that together are able to mitigate the effects of non-linear transmitter distortions using only linear operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Rice, Digital Communications: A Discrete-Time Approach, Prentice Hall, 2009

    Google Scholar 

  2. T. Riihonen and R. Wichman, “Analog and digital self-interference cancellation in full-duplex MIMO-OFDM transceivers with limited resolution in A/D conversion,” in Proc. 46th Asilomar Conference on Signals, Systems and Computers, Nov 2012, pp. 45–49.

    Google Scholar 

  3. B. Widrow and I. Kollár, Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press, 2008.

    Book  Google Scholar 

  4. B. P. Day, A. R. Margetts, D. W. Bliss, and P. Schniter, “Full-Duplex MIMO Relaying: Achievable Rates under Limited Dynamic Range,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 8, pp. 1541–1553, sep 2012.

    Google Scholar 

  5. E. Antonio-Rodriguez, R. Lopez-Valcarce, T. Riihonen, S. Werner, and R. Wichman, “Subspace-constrained SINR optimization in MIMO full-duplex relays under limited dynamic range,” in IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2015.

    Google Scholar 

  6. T. R. Turlington, Behavioral Modeling of Nonlinear RF and Microwave Devices. Artech House, 2000.

    Google Scholar 

  7. M. Cheong, S. Werner, M. Bruno, J. Figueroa, J. Cousseau, and R. Wichman, “Adaptive piecewise linear predistorters for nonlinear power amplifiers with memory,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 7, 2012.

    Google Scholar 

  8. G. Karam and H. Sari, “Analysis of predistortion, equalization, and ISI cancellation techniques in digital radio systems with nonlinear transmit amplifiers,” IEEE Transactions on Communications, vol. 37, no. 12, pp. 1245–1253, 1989.

    Article  Google Scholar 

  9. L. Ding, R. Raich, and G. Zhou, “A Hammerstein predistortion linearization design based on the indirect learning architecture,” in International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, 2002.

    Google Scholar 

  10. F. Gregorio, J. Cousseau, S. Werner, T. Riihonen, and R. Wichman, “Compensation of IQ imbalance and transmitter nonlinearities in broadband MIMO-OFDM,” in Proceedings - IEEE International Symposium on Circuits and Systems, 2011.

    Google Scholar 

  11. J. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel, full duplex wireless communication,” in Proceedings of the 16th Annual International Conference on Mobile Computing and Networking (Mobicom), 2010.

    Google Scholar 

  12. M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characterization of full-duplex wireless systems,” IEEE Transactions on Wireless Communications, vol. 11, no. 12, pp. 4296–4307, Dec 2012.

    Article  Google Scholar 

  13. M. Chung, M. S. Sim, J. Kim, D. K. Kim, and C. Chae, “Prototyping real-time full duplex radios,” IEEE Communications Magazine, vol. 53, no. 9, pp. 56–63, 2015.

    Article  Google Scholar 

  14. D. Korpi, M. Heino, C. Icheln, K. Haneda, and M. Valkama, “Compact Inband Full-Duplex Relays with Beyond 100 dB Self-Interference Suppression: Enabling Techniques and Field Measurements,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, 2017.

    Google Scholar 

  15. 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception,” 3GPP TS 36.104 version 12.7.0 Release 12), sep 2014.

    Google Scholar 

  16. A. Koohian, H. Mehrpouyan, M. Ahmadian, and M. Azarbad, “Bandwidth efficient channel estimation for full duplex communication systems,” in 2015 IEEE International Conference on Communications (ICC), 2015, pp. 4710–4714.

    Google Scholar 

  17. T. Riihonen, P. Mathecken, and R. Wichman, “Effect of oscillator phase noise and processing delay in full-duplex OFDM repeaters,” in Asilomar Conference on Signals, Systems and Computers, 2012.

    Google Scholar 

  18. A. Sahai, G. Patel, and A. Sabharwal, “Phase Noise: Understanding the Bottleneck in Full-duplex Designs,” in Asilomar Conference on Signals, Systems and Computers, 2012.

    Google Scholar 

  19. B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?” IEEE Transactions on Information Theory, vol. 49, no. 4, pp. 951–963, 2003.

    Article  Google Scholar 

  20. M. Vehkaperä, T. Riihonen, R. Wichman, and B. Xu, “Power allocation for balancing the effects of channel estimation error and pilot overhead in full-duplex decode-and-forward relaying,” in Signal Processing Advances in Wireless Communications, SPAWC, 2016.

    Google Scholar 

  21. P. Persson, M. Coldrey, A. Wolfgang, and P. Bohlin, “Design and Evaluation of a 2 x 2 MIMO Repeater,” in Proc. 3rd European Conference on Antennas and Propagation, mar 2009.

    Google Scholar 

  22. K. Haneda, E. Kahra, S. Wyne, C. Icheln, and P. Vainikainen, “Measurement of Loop-Back Interference Channels for Outdoor-to-Indoor Full-Duplex Radio Relays,” in 4th European Conference on Antennas and Propagation, Apr 2010.

    Google Scholar 

  23. T. Riihonen, A. Balakrishnan, K. Haneda, S. Wyne, S. Werner, and R. Wichman, “Optimal eigenbeamforming for suppressing self-interference in full-duplex MIMO relays,” in 45th Annual Conference on Information Sciences and Systems (CISS). IEEE, Mar 2011, pp. 1–6.

    Google Scholar 

  24. S. N. Venkatasubramanian, C. Zhang, L. Laughlin, K. Haneda, and M. A. Beach, “Geometry-based modelling of self-interference channels for outdoor scenarios,” IEEE Transactions on Antennas and Propagation, 2019.

    Google Scholar 

  25. T. Levanen, J. Talvitie, R. Wichman, V. Syrjala, M. Renfors, and M. Valkama, “Location-aware 5G communications and Doppler compensation for high-speed train networks,” in EuCNC 2017 - European Conference on Networks and Communications, 2017.

    Google Scholar 

  26. G. González, F. Gregorio, J. Cousseau, T. Riihonen, and R. Wichman, “Generalized Self-Interference Model for Full-Duplex Multicarrier Transceivers,” IEEE Trans. Comm., 2019.

    Google Scholar 

  27. G. B. Folland and A. Sitaram, “The uncertainty principle: A mathematical survey,” J. Fourier Anal. and Appl., vol. 3, no. 3, pp. 207–238, 1997.

    Article  MathSciNet  Google Scholar 

  28. F. Schaich, “Filterbank based multi carrier transmission (FBMC)—evolving OFDM: FBMC in the context of WiMAX,” in European Wireless Conference (EW), Apr 2010, pp. 1051–1058.

    Google Scholar 

  29. N. Michailow, I. Gaspar, S. Krone, M. Lentmaier, and G. Fettweis, “Generalized frequency division multiplexing: Analysis of an alternative multi-carrier technique for next generation cellular systems,” in International Symposium on Wireless Communication Systems (ISWCS), Aug 2012, pp. 171–175.

    Google Scholar 

  30. G. Berardinelli, K. Pajukoski, E. Lahetkangas, R. Wichman, O. Tirkkonen, and P. Mogensen, “On the Potential of OFDM Enhancements as 5G Waveforms,” in IEEE Vehicular Technology Conference (VTC Spring), May 2014, pp. 1–5.

    Google Scholar 

  31. C. Boyd, R.-A. Pitaval, O. Tirkkonen, and R. Wichman, “On the time-frequency localisation of 5G candidate waveforms,” in IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2015.

    Google Scholar 

  32. W. Chung, D. Hong, T. Riihonen, and R. Wichman, “Interference Cancellation Architecture for Full-Duplex System with GFDM Signaling,” in European signal processing conference (EUSIPCO), aug 2016.

    Google Scholar 

  33. P. Schniter, “Low-complexity equalization of OFDM in doubly selective channels,” IEEE Transactions on Signal Processing, vol. 52, no. 4, pp. 1002–1011, 2004.

    Article  MathSciNet  Google Scholar 

  34. G. González, F. Gregorio, J. Cousseau, R. Wichman, and S. Werner, “Uplink CFO compensation for FBMC multiple access and OFDMA in a high mobility scenario,” Physical Communication, vol. 11, 2014.

    Google Scholar 

  35. T. Riihonen, S. Werner, and R. Wichman, “Mitigation of Loopback Self-Interference in Full-Duplex MIMO Relays,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 5983–5993, Dec 2011.

    Article  MathSciNet  Google Scholar 

  36. U. Ugurlu, T. Riihonen, and R. Wichman, “Optimized in-band full-duplex MIMO relay under single-stream transmission,” IEEE Transactions on Vehicular Technology, vol. 65, no. 1, 2016.

    Google Scholar 

  37. E. Everett, C. Shepard, L. Zhong, and A. Sabharwal, “SoftNull: Many-Antenna Full-Duplex Wireless via Digital Beamforming,” IEEE Transactions on Wireless Communications, vol. 15, no. 12, pp. 8077–8092, Dec 2016.

    Article  Google Scholar 

  38. J. P. Doane, K. E. Kolodziej, and B. T. Perry, “Simultaneous transmit and receive performance of an 8-channel digital phased array,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Jul 2017, pp. 1043–1044.

    Google Scholar 

  39. R. Penrose, “A Generalized Inverse for Matrices,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, no. 3, pp. 406–413, Jul 1955.

    Article  Google Scholar 

  40. T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex MIMO relays,” IEEE Transactions on Signal Processing, vol. 59, no. 12, 2011.

    Google Scholar 

  41. P. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 4th ed. Springer, 2013.

    Book  Google Scholar 

  42. S. S. Haykin and Simon, Adaptive filter theory. Prentice Hall, 1996.

    Google Scholar 

  43. E. Antonio-Rodríguez, S. Werner, R. López-Valcarce, T. Riihonen, and R. Wichman, “Wideband full-duplex MIMO relays with blind adaptive self-interference cancellation,” Signal Processing, vol. 130, 2017.

    Google Scholar 

  44. E. Antonio-Rodriguez, R. Lopez-Valcarce, T. Riihonen, S. Werner, and R. Wichman, “SINR optimization in wideband full-duplex MIMO relays under limited dynamic range,” in Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, 2014.

    Google Scholar 

  45. J. C. Bezdek and R. J. Hathaway, “Convergence of Alternating Optimization,” Neural, Parallel Sci. Comput., vol. 11, no. 4, pp. 351–368, Dec 2003.

    MathSciNet  MATH  Google Scholar 

  46. G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.). Baltimore, MD, USA: Johns Hopkins University Press, 1996.

    MATH  Google Scholar 

  47. E. Antonio-Rodríguez, S. Werner, R. López-Valcarce, and R. Wichman, “MMSE Filter Design for Full-duplex Filter-and-forward MIMO Relays under Limited Dynamic Range,” Signal Processing, vol. 156, pp. 208–219, 2019.

    Article  Google Scholar 

  48. E. Antonio-Rodriguez, S. Werner, T. Riihonen, and R. Wichman, “Robust filter design for full-duplex relay links under limited dynamic range,” in IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2017.

    Google Scholar 

Download references

Acknowledgements

The author wants to thank Dr. Gustavo J. González for providing the full-duplex interference figure, Dr. Emilio Antonio Rodríguez for providing the simulation results of the adaptive filters, and Prof. Taneli Riihonen for the years spent with full-duplex research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risto Wichman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wichman, R. (2020). Filter Design for Self-Interference Cancellation. In: Alves, H., Riihonen, T., Suraweera, H. (eds) Full-Duplex Communications for Future Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2969-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2969-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2968-9

  • Online ISBN: 978-981-15-2969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics