Skip to main content
Log in

Optimized D-RAN Aware Data Retrieval for 5G Information Centric Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The evolution of wireless network services has enabled consumers and intelligent devices to freely exchange information with each other. Mobile users frequently exchange popular contents, resulting in massive increase in the mobile traffic. The redundant mobile traffic can be reduced by archiving the frequently accessed data within a 5G core network or radio access network, and demands for the same content can be readily met without relying on remote servers. In this paper, we propose an eNB/gNB aware data retrieval algorithm along with Liveliness and Size based data Replacement algorithm to refine, rank, and cache the data items efficiently. Data items are selected based on their popularity and cached in D-RAN for efficient data replacement. We have also included a cost-optimized Radar-Based data Retrieval algorithm that helps to find the data nearness in the neighbouring eNBs. In our proposed technique, unique contents are maintained at each end of the cluster to aid in extending content diversity within the cluster. The experimental analysis shows that the proposed model achieves lower latency, lower congestion, and higher cache hit ratio in 5G networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The authors declare that no exact code has been copied to carry out the research.

References

  1. Khan, A. R., Othman, M., Madani, S. A., & Khan, S. U. (2014). A survey of mobile cloud computing application models. IEEE Communications Surveys & Tutorials, 16(1), 393–413.

    Article  Google Scholar 

  2. Fadi, A. T., & David, D. B. (2020). Seamless authentication: For IoT-big data technologies in smart industrial application systems. IEEE Transactions on Industrial Informatics, 17, 2919–2927.

    Google Scholar 

  3. Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J. J., & Lopez-Soler, J. M. (2020). A survey on 5G usage scenarios and traffic models. IEEE Communications Surveys & Tutorials, 22(2), 905–929.

    Article  Google Scholar 

  4. Ghosh, A., Ratasuk, R., & Vook, F. (2020). NR radio interface for 5G verticals. In 5G Verticals: Customizing applications, technologies and deployment techniques (pp. 57–91).

  5. Zhang, X., Yang, M., Zhao, Y., Zhang, J., & Ge, J. (2017). An SDN-based video multicast orchestration scheme for 5G ultra-dense networks. IEEE Communications Magazine, 55(12), 77–83.

    Article  Google Scholar 

  6. Ming, Z., Xu, M., & Wang, D. (2014). InCan: In-network cache assisted eNodeB caching mechanism in 4G LTE networks. Computer Networks, 75, 367–380.

    Article  Google Scholar 

  7. Coutinho, F. D., Domingues, J. D., Marques, P. M., Pereira, S. S., Silva, H. S., & Oliveira, A. S. (2021) Towards the flexible and efficient implementation of the 5G-NR RAN physical layer. In 2021 IEEE radio and wireless symposium (RWS) (pp. 130–132). IEEE.

  8. Peccarelli, N., James, B., Irazoqui, R., Metcalf, J., Fulton, C., & Yeary, M. (2019). Survey: Characterization and mitigation of spatial/spectral interferers and transceiver nonlinearities for 5G MIMO systems. IEEE Transactions on Microwave Theory and Techniques, 67, 2829–2846.

    Article  Google Scholar 

  9. Yao, J., Han, T., & Ansari, N. (2019). On mobile edge caching. IEEE Communications Surveys & Tutorials, 21, 2525–2553.

    Article  Google Scholar 

  10. Trivisonno, R., Guerzoni, R., Vaishnavi, I., & Soldani, D. (2015). SDN-based 5G mobile networks: Architecture, functions, procedures and backward compatibility. Transactions on Emerging Telecommunications Technologies, 26(1), 82–92.

    Article  Google Scholar 

  11. Mishra, D., Zema, N. R., & Natalizio, E. (2021). A high-end IoT devices framework to foster beyond-connectivity capabilities in 5G/B5G architecture. IEEE Communications Magazine, 59(1), 55–61.

    Article  Google Scholar 

  12. Rost, P., Banchs, A., Berberana, I., Breitbach, M., Doll, M., Droste, H., Mannweiler, C., Puente, M. A., Samdanis, K., & Sayadi, B. (2016). Mobile network architecture evolution toward 5G. IEEE Communications Magazine, 54(5), 84–91.

    Article  Google Scholar 

  13. Lee, S., Yeom, I., & Kim, D. (2020). T-caching: Enhancing feasibility of in-network caching in ICN. IEEE Transactions on Parallel and Distributed Systems, 31(7), 1486–1498.

    Article  Google Scholar 

  14. Li, H., Ota, K., & Dong, M. (2018). ECCN: Orchestration of edge-centric computing and content-centric networking in the 5G radio access network. IEEE Wireless Communications, 25(3), 88–93.

    Article  Google Scholar 

  15. Maciocco, C., & Sunay, M. O. (2020). Edge cloud: An essential component of 5G networks. 5G Verticals: Customizing Applications, Technologies and Deployment Techniques, pp.169–210.

  16. Fertonani, D., & Barbieri, A., Phluido Inc. (2020). Remote radio unit with adaptive fronthaul link for a distributed radio access network. U.S. Patent 10,616,016.

  17. Salva-Garcia, P., Calero, J. M. A., Wang, Q., Arevalillo-Herráez, M., & Bernabe, J. B. (2020). Scalable virtual network video-optimizer for adaptive real-time video transmission in 5G networks. IEEE Transactions on Network and Service Management, 17, 1068–1081.

    Article  Google Scholar 

  18. Kumar, A. (2021). Detection in 5G mobile communication system using hybrid technique. National Academy Science Letters, 44(1), 39–42.

    Article  Google Scholar 

  19. Kaushik, D., & Gupta, A. (2021). Ultra-secure transmissions for 5G-V2X communications. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.12.130.

  20. Duan, P., Jia, Y., Liang, L., Rodriguez, J., Huq, K. M. S., & Li, G. (2018). Space-reserved cooperative caching in 5G heterogeneous networks for industrial IoT. IEEE Transactions on Industrial Informatics, 14(6), 2715–2724.

    Article  Google Scholar 

  21. Chen, M., Saad, W., & Yin, C. (2019). Liquid state machine learning for resource and cache management in LTE-U unmanned aerial vehicle (UAV) networks. IEEE Transactions on Wireless Communications, 18(3), 1504–1517.

    Article  Google Scholar 

  22. Chen, S., Qin, F., Hu, B., Li, X., Chen, Z., & Liu, J. (2018). User-centric ultra-dense networks for 5G. In: User-centric ultra-dense networks for 5G (pp. 1–3). Springer, Cham.

  23. Qazi, F., Khalid, O. K, Naveed, B. R., Khan, A. I, Khan, A. R. (2019). Optimal content caching in content-centric networks. In Wireless communications and mobile computing.

  24. Pham, Q. V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le, L. B., Hwang, W. J., & Ding, Z. (2020). A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, 116974–117017.

    Article  Google Scholar 

  25. Siddiqi, M. A., Yu, H., & Joung, J. (2019). 5G ultra-reliable low-latency communication implementation challenges and operational issues with IoT devices. Electronics, 8(9), 981.

    Article  Google Scholar 

  26. Kim, B. S., Zhang, C., Guo, Y., Afzal, M. K., & Sonkoly, B. (2020). IEEE access special section editorial: Information centric wireless networking with edge computing for 5G and IoT. IEEE Access, 8, 139737–139740.

    Article  Google Scholar 

  27. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., & Dai, H. (2018). A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys & Tutorials, 20(4), 3098–3130.

    Article  Google Scholar 

  28. Zheng, T. X., Wang, H. M., & Yuan, J. (2018). Secure and energy-efficient transmissions in cache-enabled heterogeneous cellular networks: Performance analysis and optimization. IEEE Transactions on Communications, 66(11), 5554–5567.

    Article  Google Scholar 

  29. Doan, K. N., Van Nguyen, T., Quek, T. Q., & Shin, H. (2018). Content-aware proactive caching for backhaul offloading in cellular network. IEEE Transactions on Wireless Communications, 17(5), 3128–3140.

    Article  Google Scholar 

  30. Dash, S., Dash, S. K., Sahu, B. J. (2021). Proactive content caching for streaming over information-centric network. In: Intelligent and cloud computing (pp. 165–172). Springer, Singapore.

  31. Hassan, Q. F., Khan, A. R., & Madani, S. A. (2018). Internet of things: Challenges. CRC Press.

    Google Scholar 

  32. Vijayakumar, K. P., Kumar, K. P. M., Kottilingam, K., Karthick, T., Vijayakumar, P., & Ganeshkumar, P. (2019). An adaptive neuro-fuzzy logic based jamming detection system in WSN. Soft Computing, 23(8), 2655–2667.

    Article  Google Scholar 

  33. Tharun, K. S., & Kottilingam, K. (2018). Optimization load balancing over imbalance datacenter topology. In International conference on computational vision and bio inspired computing (pp. 397–407). Springer, Cham.

  34. Kwak, J., Kim, Y., Le, L. B., & Chong, S. (2018). Hybrid content caching in 5G wireless networks: Cloud versus edge caching. IEEE Transactions on Wireless Communications, 17(5), 3030–3045.

    Article  Google Scholar 

  35. Quer, G., Pappalardo, I., Rao, B. D., & Zorzi, M. (2018). Proactive caching strategies in heterogeneous networks with device-to-device communications. IEEE Transactions on Wireless Communications, 17(8), 5270–5281.

    Article  Google Scholar 

  36. Zhang, Z., Yang, Y., Hua, M., Li, C., Huang, Y., & Yang, L. (2019). Proactive caching for vehicular multi-view 3D video streaming via deep reinforcement learning. IEEE Transactions on Wireless Communications, 18(5), 2693–2706.

    Article  Google Scholar 

  37. Zhong, C., Gursoy, M. C., & Velipasalar, S. (2018). A deep reinforcement learning-based framework for content caching. In 2018 52nd annual conference on information sciences and systems (CISS) (pp. 1–6). IEEE.

  38. Ning, Z., Zhang, K., Wang, X., Obaidat, M. S., Guo, L., Hu, X., Hu, B., Guo, Y., Sadoun, B., & Kwok, R. Y. (2020). Joint computing and caching in 5G-envisioned Internet of vehicles: A deep reinforcement learning-based traffic control system. IEEE Transactions on Intelligent Transportation Systems, 22(8), 5201–5212. https://doi.org/10.1109/TITS.2020.2970276.

  39. Liu, K., Liu, Y., Liu, J., Argyriou, A., & Ding, Y. (2019). Joint EPC and RAN caching of tiled VR videos for mobile networks. In International conference on multimedia modeling (pp. 92–105). Springer, Cham.

  40. Zhang, S., Zhang, N., Zhou, S., Gong, J., Niu, Z., & Shen, X. (2017). Energy-sustainable traffic steering for 5G mobile networks. IEEE Communications Magazine, 55(11), 54–60.

    Article  Google Scholar 

  41. Zhang, J., Zhang, X., & Wang, W. (2016). Cache-enabled software defined heterogeneous networks for green and flexible 5G networks. IEEE Access, 4, 3591–3604.

    Google Scholar 

  42. Chen, Z., Lee, J., Quek, T. Q., & Kountouris, M. (2017). Cooperative caching and transmission design in cluster-centric small cell networks. IEEE Transactions on Wireless Communications, 16(5), 3401–3415.

    Article  Google Scholar 

  43. Shafqat, S., Kishwer, S., & Qureshi, M. A. (2019). Energy-aware cloud architecture for intense social mobile (device to device) 5G communications in smart city. In 2019 IEEE 9th annual computing and communication workshop and conference (CCWC) (pp. 0739–0745). IEEE.

  44. Kalantari, A., Fittipaldi, M., Chatzinotas, S., Vu, T. X., & Ottersten, B. (2017). Cache-assisted hybrid satellite-terrestrial backhauling for 5G cellular networks. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6). IEEE.

  45. Liu, L., Zhou, Y., Yuan, J., Zhuang, W., & Wang, Y. (2019). Economically optimal MS association for multimedia content delivery in cache-enabled heterogeneous cloud radio access networks. IEEE Journal on Selected Areas in Communications, 37(7), 1584–1593.

    Article  Google Scholar 

  46. Mahzari, A., Taghavi Nasrabadi, A., Samiei, A., & Prakash, R. (2018). Fov-aware edge caching for adaptive 360 video streaming. In Proceedings of the 26th ACM international conference on multimedia (pp. 173–181).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kottilingam Kottursamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottursamy, K., Khan, A.u.R., Sadayappillai, B. et al. Optimized D-RAN Aware Data Retrieval for 5G Information Centric Networks. Wireless Pers Commun 124, 1011–1032 (2022). https://doi.org/10.1007/s11277-021-09392-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09392-1

Keywords

Navigation