Skip to main content
Log in

Wideband High Gain Active Feedback Transimpedance Amplifier

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new wideband high gain CMOS transimpedance amplifier is presented without using any inductor. In the proposed TIA, gain enhancing path is introduced in the active voltage-current feedback TIA topology to increase both the gain and bandwidth. This path increases the transconductance of the proposed TIA which reduces the input resistance and leads to bandwidth extension. Additionally, for utilizing the benefit of this topology, cascading of common source stage is also done to increase the gain further without deteriorating the bandwidth. Mathematical analysis is also performed to evaluate both the gain and bandwidth enhancement. These analyses are supported by simulations that are done using TSMC 0.18 µm CMOS technology with the input photodiode capacitance of 0.3 pF. The proposed TIA occupies 0.019 mm2 area and consumes 3.2 mW from 1.8 V supply voltage. The transimpedance gain of the proposed TIA is found to be 57.15 dBΩ over the bandwidth of 6.5 GHz. The input noise is 17.16 pA/√Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code availability

Not applicable.

References

  1. Amourah, M. M., & Geiger, R. L. (2010). A high gain strategy with positive-feedback gain enhancement technique. IEEE International Symposium on Circuits and Systems, 1, 631–634.

    Google Scholar 

  2. Yan, S., & Sanchez-Sinencio, E. (2000). Low voltage analog circuit design techniques: A tutorial. IEICE Transanctions on Fundamental of Electronics, 83, 179–196.

    Google Scholar 

  3. Singh, U., Gupta, M., & Srivastava, R. (2015). A new wideband regulated cascode amplifier with improved performance and its application. Microelectronics Journal, 46, 758–776.

    Article  Google Scholar 

  4. Chien, J., & Lu, L. (2007). 40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-um CMOS. IEEE Journal of Solid-State Circuits, 42, 2715–2725.

    Article  Google Scholar 

  5. Mohan, S. S., Hershenson, M. D. M., Boyd, S. P., & Lee, T. H. (2000). Bandwidth extension in CMOS with optimized on-chip inductors. IEEE Journal of Solid-State Circuits, 35, 346–355.

    Article  Google Scholar 

  6. Pan, Q., Wang, Y., & Yue, C. P. (2020). A 42-dBΩ 25-Gb/s CMOS transimpedance amplifier with multiple-peaking scheme for optical communications. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 72–76.

    Google Scholar 

  7. Lu, Z., Yeo, K. S., Ma, J., Do, M. A., Lim, W. M., & Chen, X. (2007). Broadband design techniques for transimpedance amplifiers. IEEE Transaction Circuit System I Regular Papers, 54, 590–600.

    Article  Google Scholar 

  8. Han, L., Yu, M., & Zong, L. (2010). Bandwidth enhancement for transimpedance amplifier in CMOS process. In 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai. https://doi.org/10.1109/BMEI.2010.5639311.

  9. Zhang, Y. (2008). Design of CMOS front-end receivers for optical wireless communication. Tufts University.

    Google Scholar 

  10. Shahdoost, S., Medi, A., & Saniei, N. (2016). Design of low-noise transimpedance amplifers with capacitive feedback. Analog Integrated Circuits and Processing, 86, 233–240.

    Article  Google Scholar 

  11. Singh, P., Gupta, M., & Bansal, U. (2018). Wideband transimpedance amplifier using negative capacitance and capacitive feedback. Analog Integrated Circuits and Signal Processing, 97, 269–279.

    Article  Google Scholar 

  12. Razavi, B. (2003). Design of Integrated Circuits for Optical Communications. McGraw-Hill.

    Google Scholar 

  13. Park, S. M., et al. (2004). 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications. IEEE Journal of Solid-State Circuits, 39, 112–121.

    Article  Google Scholar 

  14. Sackinger, E., & Guggenbuhl, W. (1990). A high-swing, high-impedance MOS cascode circuit. IEEE Journal Solid-State Circuits, 25, 289–298.

    Article  Google Scholar 

  15. Seifouri, M., Amiri, P., & Dadras, I. (2017). A transimpedance amplifier for optical communication network based on active voltage feedback. Microelectronics Journal, 67, 25–31.

    Article  Google Scholar 

  16. Gray, P. R., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits. Wiley.

    Google Scholar 

  17. Sansen, W. M. C., & Chang, Z. Y. (1991). Low-noise wide-band amplifiers in bipolar and CMOS technologies. Springer.

    Google Scholar 

  18. Han, S. M., Sun, G., & Jiang, F. (2009). Area-efficient CMOS transimpedance amplifier for optical receivers. Analog Integrated Circuit and Signal Processing, 58, 67–70.

    Article  Google Scholar 

  19. Chen, D., Yeo, K. S., Shi, X., Do, M. A., Boon, C. C., & Lim, W. M. (2013). Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission. IEEE Transactions on very large scale of integration (VLSI) systems, 21, 1516–1525.

    Article  Google Scholar 

  20. Taghavi, M. H., Belostotski, L., Haslett, J. W., & Ahmadi, P. (2015). A CMOS low-power cross-coupled immittance-converter transimpedance amplifier. IEEE Microwave and Wireless Components Letters, 25, 403–405.

    Article  Google Scholar 

  21. Marufuzzaman, M., Reaz, M. B. I., & Yeng, L. S. (2018). Design of low-cost transimpedance amplifier for optical receiver. Transaction on Electrical and Electronic Material, 1, 7–13.

    Article  Google Scholar 

Download references

Funding

Nil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Gupta, M., Aggarwal, B. et al. Wideband High Gain Active Feedback Transimpedance Amplifier. Wireless Pers Commun 123, 2721–2736 (2022). https://doi.org/10.1007/s11277-021-09262-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09262-w

Keywords

Navigation