Skip to main content
Log in

Improving Fairness and Convergence Efficiency of TCP Traffic in Multi-hop Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Last-mile telecommunication networks witnessed phenomenal growth in using multi-hop wireless technologies to improve capacity and radio coverage for a longer extent. The penetration of wireless internet in last-mile multi-hop networks has significantly altered our routine lifestyle. Most internet applications heavily rely on transmission control protocol (TCP) to reliably deliver data packets between the sender-receiver processes. However, the fairness and steady-state convergence performance of TCP data traffic in the multi-hop radio networks (MRN) remain plagued by spurious rate reduction, flat rate cut, and low convergence limitations. The feedback-assisted improved recovery (FAIR) algorithm proposed in this article adopts three strategies to strengthen TCP's performance in the MRN. Initiate the congestion avoidance based on intermediate node queue accumulation, TCP's growth-based proportionate rate reduction method, and a rapid recovery mechanism. The MRN simulation experiments decisively demonstrate the substantial improvement in steady-state convergence time, flow fairness, throughput, and packet latency performances of the FAIR algorithm against RFC 6582, NRT, and OQS approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cisco Annual Internet Report (2018–2023). Retrieved April 2, 2021, from https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html.

  2. Cisco Annual Internet Report - Cisco Annual Internet Report Highlights Tool. Retrieved April 2, 2021, from https://www.cisco.com/c/dam/m/en_us/solutions/executive-perspectives/vni-forecast-highlights/total/pdf/Global_Internet_Users.pdf.

  3. Huang, C., Zhai, B., Tang, A., & Wang, X. (2019). Virtual mesh networking for achieving multi-hop D2D communications in 5G networks. Ad Hoc Networks, 94, 101936. https://doi.org/10.1016/j.adhoc.2019.101936

    Article  Google Scholar 

  4. Czumaj, A., & Davies, P. (2019). Leader election in multi-hop radio networks. Theoretical Computer Science, 792, 2–11. https://doi.org/10.1016/j.tcs.2019.02.027

    Article  MathSciNet  MATH  Google Scholar 

  5. Khanna, G., & Chaturvedi, S. K. (2018). A comprehensive survey on multi-hop wireless networks: Milestones, changing trends and concomitant challenges. Wireless Personal Communications, 101(2), 677–722. https://doi.org/10.1007/s11277-018-5711-8

    Article  Google Scholar 

  6. Araujo, F., Gomes, A., & Rocha, R. P. (2020). Towards optimal convergecast in wireless ad hoc networks. Ad Hoc Networks, 107, 102214. https://doi.org/10.1016/j.adhoc.2020.102214

    Article  Google Scholar 

  7. Semiari, O., Saad, W., Bennis, M., & Dawy, Z. (2017). Inter-operator resource management for millimeter wave multi-hop backhaul networks. IEEE Transactions on Wireless Communications, 16(8), 5258–5272. https://doi.org/10.1109/twc.2017.2707410

    Article  Google Scholar 

  8. Mohamed, E. M., Elhalawany, B. M., Khallaf, H. S., Zareei, M., Zeb, A., & Abdelghany, M. A. (2020). Relay probing for millimeter wave multi-hop D2D networks. IEEE Access, 8, 30560–30574. https://doi.org/10.1109/ACCESS.2020.2972614

    Article  Google Scholar 

  9. Ramezan, G., Leung, C., & Wang, Z. J. (2018). A survey of secure routing protocols in multi-hop cellular networks. IEEE Communications Surveys & Tutorials, 20(4), 3510–3541. https://doi.org/10.1109/COMST.2018.2859900

    Article  Google Scholar 

  10. Jung, H., & Lee, I. H. (2018). Performance analysis of millimeter-wave multi-hop machine-to-machine networks based on hop distance statistics. Sensors, 18(1), 204. https://doi.org/10.3390/s18010204

    Article  Google Scholar 

  11. TCP Optimization: Opportunities, KPIs, and Considerations: An Industry Whitepaper. Retrieved April 2, 2021, from https://www.sandvine.com/hubfs/downloads/archive/whitepaper-tcp-optimization-opportunities-kpis-and-considerations.pdf.

  12. Patriciello, N., Núñez-Martínez, J., Baranda, J., Casoni, M., & Mangues-Bafalluy, J. (2017). TCP performance evaluation over backpressure-based routing strategies for wireless mesh backhaul in LTE networks. Ad Hoc Networks, 60, 40–51. https://doi.org/10.1016/j.adhoc.2017.03.001

    Article  Google Scholar 

  13. Shenoy, S. U., Kumari, S., & Shenoy, U. K. K. (2019). Comparative analysis of TCP Variants for video transmission over multi-hop mobile Ad hoc networks. In International conference on computer networks and communication technologies (pp. 371–381). Springer, Singapore. https://doi.org/10.1007/978-981-10-8681-6_34.

  14. Custura, A., Secchi, R., & Fairhurst, G. (2018). Exploring dscp modification pathologies in the internet. Computer Communications, 127, 86–94. https://doi.org/10.1016/j.comcom.2018.05.016

    Article  Google Scholar 

  15. Haile, H., Grinnemo, K. J., Ferlin, S., Hurtig, P., & Brunstrom, A. (2021). End-to-end congestion control approaches for high throughput and low delay in 4G/5G cellular networks. Computer Networks, 186, 107692. https://doi.org/10.1016/j.comnet.2020.107692

    Article  Google Scholar 

  16. Kanellopoulos, D. (2019). Congestion control for MANETs: An overview. ICT Express, 5(2), 77–83. https://doi.org/10.1016/j.icte.2018.06.001

    Article  Google Scholar 

  17. Menth, M., & Veith, S. (2018). Active queue management based on congestion policing (CP-AQM). International conference on measurement modelling and evaluation of computing systems (pp. 173–187). Cham: Springer. https://doi.org/10.1007/978-3-319-74947-1_12

    Chapter  Google Scholar 

  18. Abbas, G., Halim, Z., & Abbas, Z. H. (2015). Fairness-driven queue management: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 18(1), 324–367. https://doi.org/10.1109/COMST.2015.2463121

    Article  Google Scholar 

  19. Alaoui, S. B., Tissir, E. H., & Chaibi, N. (2018). Active queue management based feedback control for TCP with successive delays in single and multiple bottleneck topology. Computer Communications, 117, 58–70. https://doi.org/10.1016/j.comcom.2018.01.003

    Article  Google Scholar 

  20. Abbas, G., Raza, U., Halim, Z., & Kifayat, K. (2019). ARCH: A dual-mode fairness-driven AQM for promoting cooperative behaviour in best effort Internet. IET Networks, 8(6), 372–380. https://doi.org/10.1049/iet-net.2018.5089

    Article  Google Scholar 

  21. Al-Saadi, R., Armitage, G., But, J., & Branch, P. (2019). A survey of delay-based and hybrid TCP congestion control algorithms. IEEE Communications Surveys & Tutorials, 21(4), 3609–3638. https://doi.org/10.1109/COMST.2019.2904994

    Article  Google Scholar 

  22. Luo, J., Jin, J., & Shan, F. (2017). Standardization of low-latency TCP with explicit congestion notification: A survey. IEEE Internet Computing, 21(1), 48–55. https://doi.org/10.1109/MIC.2017.11

    Article  Google Scholar 

  23. Rico, D., & Merino, P. (2020). A Survey of end-to-end solutions for reliable low-latency communications in 5G networks. IEEE Access, 8, 192808–192834. https://doi.org/10.1109/ACCESS.2020.3032726

    Article  Google Scholar 

  24. Sharma, V. K., & Kumar, M. (2017). Adaptive congestion control scheme in mobile ad-hoc networks. Peer-to-Peer Networking and Applications, 10(3), 633–657. https://doi.org/10.1007/s12083-016-0507-7

    Article  Google Scholar 

  25. Xu, K., Tian, Y., & Ansari, N. (2004). TCP-Jersey for wireless IP communications. IEEE Journal on selected areas in communications, 22(4), 747–756. https://doi.org/10.1109/JSAC.2004.825989

    Article  Google Scholar 

  26. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., & Wang, R. (2002). TCP Westwood: End-to-end congestion control for wired/wireless networks. Wireless Networks, 8(5), 467–479. https://doi.org/10.1023/A:1016590112381

    Article  MATH  Google Scholar 

  27. Xu, K., Tian, Y., & Ansari, N. (2005). Improving TCP performance in integrated wireless communications networks. Computer Networks, 47(2), 219–237. https://doi.org/10.1016/j.comnet.2004.07.006

    Article  Google Scholar 

  28. Peng, F., & Leung, V. C. (2007). Enhancing fairness and throughput of TCP in heterogeneous wireless access networks. International Journal of Wireless Information Networks, 14(3), 225. https://doi.org/10.1007/s10776-007-0061-6

    Article  Google Scholar 

  29. Byun, H. J., & Lim, J. T. (2005). Explicit window adaptation algorithm over TCP wireless networks. IEE Proceedings-Communications, 152(5), 691–696. https://doi.org/10.1049/ip-com:20045091

    Article  Google Scholar 

  30. Sharma, V., Kar, K., Ramakrishnan, K. K., & Kalyanaraman, S. (2012). A transport protocol to exploit multipath diversity in wireless networks. IEEE/ACM Transactions on Networking, 20(4), 1024–1039. https://doi.org/10.1109/TNET.2011.2181979

    Article  Google Scholar 

  31. Hourt, N., Kar, K., & Ganguly, B. (2013). Performance of loss-tolerant TCP (LT-TCP) in the presence of correlated losses. In MILCOM 2013–2013 IEEE Military communications conference (pp. 1341–1346). https://doi.org/10.1109/MILCOM.2013.228

  32. Chang, H. P., Kan, H. W., Ho, M. H., Chang, H. P., Kan, H. W., & Ho, M. H. (2012). Adaptive TCP congestion control and routing schemes using cross-layer information for mobile ad hoc networks. Computer Communications, 35(4), 454–474. https://doi.org/10.1016/j.comcom.2011.11.008

    Article  Google Scholar 

  33. Pignataro, C., Gont, F (2013). Formally deprecating some ICMPv4 message types. Internet engineering task force, RFC 6918. https://doi.org/10.17487/RFC6918.

  34. Pignataro, C., Shore, M (2014). An acceptable use policy for new ICMP types and codes. best current practice. Internet engineering task force, RFC 7279. https://doi.org/10.17487/RFC7279.

  35. Sharma, V. K., Verma, L. P., & Kumar, M. (2019). CL-ADSP: Cross-Layer adaptive data scheduling policy in mobile ad-hoc networks. Future Generation Computer Systems, 97, 530–563. https://doi.org/10.1016/j.future.2019.03.013

    Article  Google Scholar 

  36. Chang, B. J., Li, Y. H., Chen, S. P., & Liang, Y. H. (2016). Cross-layer-based adaptive TCP algorithm for cloud computing services in 4G LTE-A relaying communication. Wireless Networks, 22(8), 2579–2595. https://doi.org/10.1007/s11276-015-1117-7

    Article  Google Scholar 

  37. Saedi, T., & El-Ocla, H. (2020). TCP CERL+: Revisiting TCP congestion control in wireless networks with random loss. Wireless Networks. https://doi.org/10.1007/s11276-020-02459-0

    Article  Google Scholar 

  38. Huang, P. K., Lin, X., & Wang, C. C. (2012). A low-complexity congestion control and scheduling algorithm for multihop wireless networks with order-optimal per-flow delay. IEEE/ACM transactions on networking, 21(2), 495–508. https://doi.org/10.1109/TNET.2012.2213343

    Article  Google Scholar 

  39. Sreekumari, P., & Lee, M. (2013). TCP NRT: A new TCP algorithm for differentiating non-congestion retransmission timeouts over multihop wireless networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–20. https://doi.org/10.1186/1687-1499-2013-172

    Article  Google Scholar 

  40. Sreekumari, P., & Chung, S. H. (2011). TCP NCE: A unified solution for non-congestion events to improve the performance of TCP over wireless networks. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–20. https://doi.org/10.1186/1687-1499-2011-23

    Article  Google Scholar 

  41. Priya, S. S., & Murugan, K. (2015). Enhancing TCP fairness in wireless networks using dual queue approach with optimal queue selection. Wireless Personal Communications, 83(2), 1359–1372. https://doi.org/10.1007/s11277-015-2455-6

    Article  Google Scholar 

  42. Jude, M. J. A., & Kuppuswami, S. (2017). Enhanced window increment and adaptive recovery TCP for multi-hop wireless networks. Electronics Letters, 53(6), 438–440. https://doi.org/10.1049/el.2016.2601

    Article  Google Scholar 

  43. Dukkipati, N., Refice, T., Cheng, Y., Chu, J., Herbert, T., Agarwal, A., & Sutin, N. (2010). An argument for increasing TCP’s initial congestion window. ACM SIGCOMM Computer Communication Review, 40(3), 26–33. https://doi.org/10.1145/1823844.1823848

    Article  Google Scholar 

  44. Migault, D., Guggemos, T., & Nir, Y. (2020). Implicit initialization vector (IV) for counter-based ciphers in encapsulating security payload (ESP). Internet engineering task force, RFC 8750. https://doi.org/10.17487/RFC8750

  45. Gardner, K., Harchol-Balter, M., Hyytiä, E., & Righter, R. (2017). Scheduling for efficiency and fairness in systems with redundancy. Performance Evaluation, 116, 1–25. https://doi.org/10.1016/j.peva.2017.07.001

    Article  Google Scholar 

  46. Sediq, A. B., Gohary, R. H., Schoenen, R., & Yanikomeroglu, H. (2013). Optimal tradeoff between sum-rate efficiency and Jain’s fairness index in resource allocation. IEEE Transactions on Wireless Communications, 12(7), 3496–3509. https://doi.org/10.1109/TWC.2013.061413.121703

    Article  Google Scholar 

  47. Altman, E., & Jimenez, T. (2012). NS Simulator for beginners. Synthesis Lectures on Communication Networks, 5(1), 1–184. https://doi.org/10.2200/S00397ED1V01Y201112CNT010

    Article  Google Scholar 

  48. Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., & Schwamborn, M. (2010). Bonnmotion: A mobility scenario generation and analysis tool. In Proceedings of the 3rd international ICST conference on simulation tools and techniques, 1–10. https://doi.org/10.4108/ICST.SIMUTOOLS2010.8684

  49. Floyd, S. (2008). Metrics for the evaluation of congestion control mechanisms. Internet engineering task force, RFC 5166. https://doi.org/10.17487/RFC5166

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joseph Auxilius Jude.

Ethics declarations

Conflict of interest

The authors acknowledge that no competing interest concerning the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jude, M.J.A., Diniesh, V.C., Shivaranjani, M. et al. Improving Fairness and Convergence Efficiency of TCP Traffic in Multi-hop Wireless Networks. Wireless Pers Commun 121, 459–485 (2021). https://doi.org/10.1007/s11277-021-08645-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08645-3

Keyword

Navigation