Skip to main content
Log in

Throughput stability and flow fairness enhancement of TCP traffic in multi-hop wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the multi-hop wireless network, transmission control protocol (TCP) throughput stability and flow fairness performances are worsened due to slower flow convergence in the loss recovery phase and flat-rate reduction during the congestion control process. In this article, a combination of network-assisted and window utilization based congestion control approach, known as feedback assisted improved recovery + (FAIR+), is proposed to overcome TCP's limitations under multi-hop wireless networks. The proposed FAIR+ algorithm initiates the congestion control process based on the queue level notification of the relay node and trims down the sending rate based on TCP flow's utilization level. In the congestion recovery phase, the FAIR+ algorithm implements a newer window increment pattern that achieves a faster convergence rate than the existing RFC 6582 implementation. The throughput stability of the FAIR+ algorithm is validated using the duality model and multi-hop wireless simulation. The simulation results convincingly prove that the FAIR+ attains significant improvement in throughput, flow fairness, and end-to-end latency performance over the existing TCP variants (OQS, NRT, and Westwood).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou, K., Gui, J., & Xiong, N. (2017). Improving cellular downlink throughput by multi-hop relay-assisted outband D2D communications. EURASIP Journal on Wireless Communications and Networking,2017(1), 209. https://doi.org/10.1186/s13638-017-0998-9.

    Article  Google Scholar 

  2. Shaikh, F. S., & Wismüller, R. (2018). Routing in multi-hop cellular device-to-device (D2D) networks: A survey. IEEE Communications Surveys & Tutorials,20(4), 2622–2657. https://doi.org/10.1109/COMST.2018.2848108.

    Article  Google Scholar 

  3. Venkataraman, H., Gandhi, D., & Tomar, V. (2014). Multi-hop multi-band intelligent relay-based architecture for LTE-advanced multi-hop wireless cellular networks. Wireless Personal Communications,75(1), 131–153. https://doi.org/10.1007/s11277-013-1352-0.

    Article  Google Scholar 

  4. El Alami, M., Benamar, N., Younis, M., & Shahin, A. A. (2019). A framework for enabling Internet access using Wi-Fi peer-to-peer links. Wireless Personal Communications,109(1), 521–538. https://doi.org/10.1007/s11277-019-06577-7.

    Article  Google Scholar 

  5. Fadlullah, Z. M., Kawamoto, Y., Nishiyama, H., Kato, N., Egashira, N., Yano, K., et al. (2017). Multi-hop wireless transmission in multi-band WLAN systems: Proposal and future perspective. IEEE Wireless Communications,26(1), 108–113. https://doi.org/10.1109/MWC.2017.1700148.

    Article  Google Scholar 

  6. Le, M., Clyde, S., & Kwon, Y. W. (2019). Enabling multi-hop remote method invocation in device-to-device networks. Human-Centric Computing and Information Sciences,9(1), 1–22. https://doi.org/10.1186/s13673-019-0182-9.

    Article  Google Scholar 

  7. Mellott, M. J., Garlisi, D., Colbourn, C. J., Syrotiuk, V. R., & Tinnirello, I. (2019). Realizing airtime allocations in multi-hop Wi-Fi networks: A stability and convergence study with testbed evaluation. Computer Communications,145, 273–283. https://doi.org/10.1016/j.comcom.2019.07.006.

    Article  Google Scholar 

  8. Huang, C., Zhai, B., Tang, A., & Wang, X. (2019). Virtual mesh networking for achieving multi-hop D2D communications in 5G networks. Ad Hoc Networks,94, 101936. https://doi.org/10.1016/j.adhoc.2019.101936.

    Article  Google Scholar 

  9. Mohamed, E. M., Elhalawany, B. M., Khallaf, H. S., Zareei, M., Zeb, A., & Abdelghany, M. A. (2020). Relay Probing for Millimeter Wave Multi-Hop D2D Networks. IEEE Access,8, 30560–30574. https://doi.org/10.1109/ACCESS.2020.2972614.

    Article  Google Scholar 

  10. Aniktar, H., & Bulus, U. (2016). Relay multi-hop communications for next generation mobile networks: Investigation of path-loss models. Wireless Personal Communications,88(4), 897–910. https://doi.org/10.1007/s11277-016-3218-8.

    Article  Google Scholar 

  11. Khanna, G., & Chaturvedi, S. K. (2018). A comprehensive survey on multi-hop wireless networks: milestones, changing trends and concomitant challenges. Wireless Personal Communications,101(2), 677–722. https://doi.org/10.1007/s11277-018-5711-8.

    Article  Google Scholar 

  12. Hoque, M. A., Hong, X., & Dixon, B. (2014). Efficient multi-hop connectivity analysis in urban vehicular networks. Vehicular Communications,1(2), 78–90. https://doi.org/10.1016/j.vehcom.2014.04.002.

    Article  Google Scholar 

  13. Ali, A., & Khan, F. A. (2020). Condition and location-aware channel switching scheme for multi-hop multi-band WLANs. Computer Networks,168, 107048. https://doi.org/10.1016/j.comnet.2019.107048.

    Article  Google Scholar 

  14. Coll-Perales, B., Gozálvez, J., & Friderikos, V. (2016). Context-aware opportunistic networking in multi-hop cellular networks. Ad Hoc Networks,37, 418–434. https://doi.org/10.1016/j.adhoc.2015.09.004.

    Article  Google Scholar 

  15. Allman, M., Paxson, V., & Blanton, E. (2009). RFC 5681: TCP Congestion Control. https://tools.ietf.org/html/rfc5681

  16. Gomez, C., Arcia-Moret, A., & Crowcroft, J. (2018). TCP in the Internet of Things: From ostracism to prominence. IEEE Internet Computing,22(1), 29–41. https://doi.org/10.1109/MIC.2018.112102200.

    Article  Google Scholar 

  17. Pokhrel, S. R., & Williamson, C. (2018). Modeling compound TCP over WiFi for IoT. IEEE/ACM Transactions on Networking,26(2), 864–878. https://doi.org/10.1109/TNET.2018.2806352.

    Article  Google Scholar 

  18. Gotin, M., Lösch, F., & Reussner, R. (2019). TCP-Inspired Congestion Avoidance for Cloud-IoT Applications. In IEEE international conference on software architecture companion (ICSA-C). (pp. 5–10). https://doi.org/10.1109/ICSA-C.2019.00009

  19. Park, M., & Paek, J. (2019). TAiM: TCP assistant-in-the-middle for multihop low-power and lossy networks in IoT. Journal of Communications and Networks,21(2), 192–199. https://doi.org/10.1109/JCN.2019.000017.

    Article  Google Scholar 

  20. Zhang, M., Polese, M., Mezzavilla, M., Zhu, J., Rangan, S., Panwar, S., et al. (2019). Will TCP Work in mmWave 5G cellular networks? IEEE Communications Magazine,57(1), 65–71. https://doi.org/10.1109/MCOM.2018.1701370.

    Article  Google Scholar 

  21. Na, W., Lakew, D. S., Lee, J., & Cho, S. (2019). Congestion control vs. link failure: TCP behavior in mmWave connected vehicular networks. Future Generation Computer Systems,101, 1213–1222. https://doi.org/10.1016/j.future.2019.07.065.

    Article  Google Scholar 

  22. Le, H. D., Nguyen, C. T., Mai, V. V., & Pham, A. T. (2019). On the throughput performance of TCP cubic in millimeter-wave cellular networks. IEEE Access,7, 178618–178630. https://doi.org/10.1109/ACCESS.2019.2959134.

    Article  Google Scholar 

  23. Polese, M., Jana, R., & Zorzi, M. (2017). TCP and MP-TCP in 5G mmWave networks. IEEE Internet Computing,21(5), 12–19. https://doi.org/10.1109/MIC.2017.3481348.

    Article  Google Scholar 

  24. Al-Jubari, A. M., Othman, M., Ali, B. M., & Hamid, N. A. W. A. (2011). TCP performance in multi-hop wireless ad hoc networks: challenges and solution. EURASIP Journal on Wireless Communications and Networking,2011(1), 198. https://doi.org/10.1186/1687-1499-2011-198.

    Article  Google Scholar 

  25. Begin, T., Baynat, B., Lassous, I. G., & Abreu, T. (2016). Performance analysis of multi-hop flows in IEEE 802.11 networks: A flexible and accurate modeling framework. Performance Evaluation,96, 12–32. https://doi.org/10.1016/j.peva.2015.12.003.

    Article  Google Scholar 

  26. Rezaei, S., Gharib, M., & Movaghar, A. (2018). Throughput analysis of IEEE 802.11 multi-hop wireless networks with routing consideration: A general framework. IEEE Transactions on Communications,66(11), 5430–5443. https://doi.org/10.1109/tcomm.2018.2848905.

    Article  Google Scholar 

  27. Maity, M., Raman, B., & Vutukuru, M. (2017). TCP Download performance in dense WiFi scenarios: Analysis and solution. IEEE Transactions on Mobile Computing,16(1), 213–227. https://doi.org/10.1109/tmc.2016.2540632.

    Article  Google Scholar 

  28. SreeArthi, D., Malini, S., Jude, M. J. A., & Diniesh, V. C. (2017). Micro level analysis of TCP congestion control algorithm in multi-hop wireless networks. IEEE International Conference on Computer Communication and Informatics (ICCCI). https://doi.org/10.1109/iccci.2017.8117765.

    Article  Google Scholar 

  29. Ramakrishnan, K., Floyd, S., & Black, D. (2001). RFC3168: The addition of explicit congestion notification (ECN) to IP. https://tools.ietf.org/html/rfc3168

  30. Black, D. (2018). RFC8311: Relaxing Restrictions on Explicit Congestion Notification (ECN) Experimentation. https://tools.ietf.org/html/rfc8311

  31. Xu, K., Tian, Y., & Ansari, N. (2004). TCP-Jersey for wireless IP communications. IEEE Journal on Selected Areas in Communications,22(4), 747–756. https://doi.org/10.1109/JSAC.2004.825989.

    Article  Google Scholar 

  32. Xu, K., Tian, Y., & Ansari, N. (2005). Improving TCP performance in integrated wireless communications networks. Computer Networks,47(2), 219–237. https://doi.org/10.1016/j.comnet.2004.07.006.

    Article  Google Scholar 

  33. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., & Wang, R. (2002). TCP Westwood: end-to-end congestion control for wired/wireless networks. Wireless Networks,8(5), 467–479. https://doi.org/10.1023/A:1016590112381.

    Article  MATH  Google Scholar 

  34. Chang, H. P., Kan, H. W., & Ho, M. H. (2012). Adaptive TCP congestion control and routing schemes using cross-layer information for mobile ad hoc networks. Computer Communications,35(4), 454–474. https://doi.org/10.1016/j.comcom.2011.11.008.

    Article  Google Scholar 

  35. Byun, H. J., & Lim, J. T. (2005). Explicit window adaptation algorithm over TCP wireless networks. IEE Proceedings-Communications,152(5), 691–696. https://doi.org/10.1049/ip-com:20045091.

    Article  Google Scholar 

  36. Yun, J. H. (2009). Cross-layer explicit link status notification to improve TCP performance in wireless networks. EURASIP Journal on Wireless Communications and Networking,2009(1), 617818. https://doi.org/10.1155/2009/617818.

    Article  Google Scholar 

  37. Peng, F., & Leung, V. C. (2007). Enhancing fairness and throughput of TCP in heterogeneous wireless access networks. International Journal of Wireless Information Networks,14(3), 225. https://doi.org/10.1007/s10776-007-0061-6.

    Article  Google Scholar 

  38. Sreekumari, P., & Chung, S. H. (2011). TCP NCE: A unified solution for non-congestion events to improve the performance of TCP over wireless networks. EURASIP Journal on Wireless Communications and Networking,2011(1), 23. https://doi.org/10.1186/1687-1499-2011-23.

    Article  Google Scholar 

  39. Sreekumari, P., & Lee, M. (2013). TCP NRT: A new TCP algorithm for differentiating non-congestion retransmission timeouts over multihop wireless networks. EURASIP Journal on Wireless Communications and Networking,2013(1), 172. https://doi.org/10.1186/1687-1499-2013-172.

    Article  Google Scholar 

  40. Huang, P. K., Lin, X., & Wang, C. C. (2013). A low-complexity congestion control and scheduling algorithm for multihop wireless networks with order-optimal per-flow delay. IEEE/ACM transactions on networking,21(2), 495–508. https://doi.org/10.1109/TNET.2012.2213343.

    Article  Google Scholar 

  41. Priya, S. S., & Murugan, K. (2015). Enhancing TCP fairness in wireless networks using dual queue approach with optimal queue selection. Wireless Personal Communications,83(2), 1359–1372. https://doi.org/10.1007/s11277-015-2455-6.

    Article  Google Scholar 

  42. Jude, M. J. A., & Kuppuswami, S. (2017). Enhanced window increment and adaptive recovery TCP for multi-hop wireless networks. Electronics Letters,53(6), 438–440. https://doi.org/10.1049/el.2016.2601.

    Article  Google Scholar 

  43. Jude, M. J. A., Diniesh, V. C., Shivaranjani, M., & Shanju, R. (2018). A feedback aware reliable transport protocol with improved window increment mechanism for inter vehicular wireless network. Wireless Personal Communications,98(1), 1119–1134. https://doi.org/10.1007/s11277-017-4911-y.

    Article  Google Scholar 

  44. Chu, J., Dukkipati, N., Cheng, Y., & Mathis, M. (2013). RFC6928: Increasing TCP’s initial window. https://tools.ietf.org/html/rfc6928

  45. Henderson, T., Floyd, S., Gurtov, A., & Nishida, Y. (2012). RFC6582: The NewReno modification to TCP’s fast recovery algorithm. https://tools.ietf.org/html/rfc6582.

  46. Adams, R. (2012). Active queue management: A survey. IEEE Communications Surveys & Tutorials,15(3), 1425–1476. https://doi.org/10.1109/SURV.2012.082212.00018.

    Article  Google Scholar 

  47. Al-Saadi, R., Armitage, G., But, J., & Branch, P. (2019). A survey of delay-based and hybrid TCP congestion control algorithms. IEEE Communications Surveys & Tutorials,21(4), 3609–3638. https://doi.org/10.1109/COMST.2019.2904994.

    Article  Google Scholar 

  48. Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking,4, 397–413. https://doi.org/10.1109/90.251892.

    Article  Google Scholar 

  49. Singhal, C., & De, S. (Eds.). (2017). Resource allocation in next-generation broadband wireless access networks. Hershey: IGI Global.

    Google Scholar 

  50. Low, S. H. (2003). A duality model of TCP and queue management algorithms. IEEE/ACM Transactions on Networking,11(4), 525–536. https://doi.org/10.1109/TNET.2003.815297.

    Article  Google Scholar 

  51. Tran, N. H., Hong, C. S., & Lee, S. (2012). Cross-layer design of congestion control and power control in fast-fading wireless networks. IEEE Transactions on Parallel and Distributed Systems,24(2), 260–274. https://doi.org/10.1109/TPDS.2012.118.

    Article  Google Scholar 

  52. The Network Simulator-2 (2020). https://www.isi.edu/nsnam/ns. Accessed April 26, 2020.

  53. BonnMotion (2020) A mobility scenario generation and analysis tool. https://sys.cs.uos.de/bonnmotion. Accessed April 26, 2020.

  54. Floyd, S. (2008). RFC 5166: Metrics for the Evaluation of Congestion Control Mechanisms. https://tools.ietf.org/html/rfc5166.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joseph Auxilius Jude.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph Auxilius Jude, M., Diniesh, V.C. & Shivaranjani, M. Throughput stability and flow fairness enhancement of TCP traffic in multi-hop wireless networks. Wireless Netw 26, 4689–4704 (2020). https://doi.org/10.1007/s11276-020-02357-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02357-5

Keywords

Navigation