Skip to main content
Log in

Value-based multi-agent deep reinforcement learning for collaborative computation offloading in internet of things networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As a promising computing paradigm, mobile edge computing (MEC) can assist Internet of Things (IoT) devices in processing computation-intensive tasks. However, because of the different locations, limited resources, and dynamic loads of IoT devices and edge servers, designing a distributed computation offloading approach for the IoT system is challenging. In this paper, considering the delay-sensitive tasks and the binary offloading mechanism, we focus on designing a collaborative offloading scheme between different IoT devices. In order to reduce the overall consumed energy of IoT devices based on guaranteeing the delay constraints of tasks, we propose a distributed offloading algorithm by utilizing the value-based multi-agent deep reinforcement learning (MADRL) method. Specifically, with the individual networks deployed locally and the collaborative network deployed at the edge, IoT devices can learn their offloading policies from expericence data, and then determine their offloading decisions independently. Compared with several baseline algorithms, the proposed algorithm can better achieve our optimiaztion goal, which is demonstrated by the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The corresponding author will provide the datasets of this work on reasonable request.

References

  1. Ren, J., Hou, T., Wang, H., Tian, H., Wei, H., Zheng, H., & Zhang, X. (2021). Collaborative task offloading and resource scheduling framework for heterogeneous edge computing. Wireless Networks. https://doi.org/10.1007/s11276-021-02768-y

    Article  Google Scholar 

  2. Yang, L., Zou, Y., Xu, M., Xu, Y., Yu, D., & Cheng, X. (2022). Distributed Consensus for blockchains in Internet-of-Things networks. Tsinghua Science and Technology, 27(5), 817–831.

    Article  Google Scholar 

  3. Xu, X., Gu, J., Yan, H., Liu, W., Qi, L., & Zhou, X. (2023). Reputation-aware supplier assessment for blockchain-enabled supply chain in industry 4.0. IEEE Transactions on Industrial Informatics, 19(4), 5485–5494.

    Article  Google Scholar 

  4. Qi, L., Yang, Y., Zhou, X., Rafique, W., & Ma, J. (2022). Fast anomaly identification based on multi-aspect data streams for intelligent intrusion detection toward secure industry 4.0. IEEE Transactions on Industrial Informatics, 18(9), 6503–6511.

    Article  Google Scholar 

  5. Wu, S., Shen, S., Xu, X., Chen, Y., Zhou, X., Liu, D., Xue, X., & Qi, L. (2022). Popularity-aware and diverse web APIs recommendation based on correlation graph. IEEE Transactions on Computational Social Systems, 10(2), 771–782.

    Article  Google Scholar 

  6. Qi, L., Lin, W., Zhang, X., Dou, W., Xu, X., & Chen, J. (2023). A correlation graph based approach for personalized and compatible web APIs recommendation in mobile APP development. IEEE Transactions on Knowledge and Data Engineering, 35(6), 5444–5457.

    Google Scholar 

  7. Yang, C., Xu, X., Zhou, X., & Qi, L. (2022). Deep Q-network driven task offloading for efficient multimedia data analysis in edge computing. ACM Transactions on Multimedia Computing Communications and Applications. https://doi.org/10.1145/3548687

    Article  Google Scholar 

  8. Xu, M., Zhao, F., Zou, Y., Liu, C., Cheng, X., & Dressler, F. (2022). BLOWN: a blockchain protocol for single-hop wireless networks under adversarial SINR. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2022.3162117

    Article  Google Scholar 

  9. Yu, D., Zou, Z., Chen, S., Tao, Y., Tian, B., Lv, W., & Cheng, X. (2021). Decentralized parallel SGD with privacy preservation in vehicular networks. IEEE Transactions on Vehicular Technology, 70(6), 5211–5220.

    Article  Google Scholar 

  10. Jia, Y., Liu, B., Dou, W., Xu, X., Zhou, X., Qi, L., & Yan, Z. (2022). CroApp: A CNN-based resource optimization approach in edge computing environment. IEEE Transactions on Industrial Informatics, 18(9), 6300–6307.

    Article  Google Scholar 

  11. He, Q., Tan, S., Chen, F., Xu, X., Qi, L., Hei, X., Jin, H., & Yang, Y. (2023). EDIndex: Enabling fast data queries in edge storage systems. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval.

  12. Xu, X., Fang, Z., Qi, L., Zhang, X., He, Q., & Zhou, X. (2021). TripRes: Traffic flow prediction driven resource reservation for multimedia IoV with edge computing. ACM Transactions on Multimedia Computing Communications and Applications. https://doi.org/10.1145/3401979

    Article  Google Scholar 

  13. Guo, F., Zhang, H., Ji, H., Li, X., & Leung, V. C. (2018). An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Transactions on Networking, 26(6), 2651–2664.

    Article  Google Scholar 

  14. Xue, J., & An, Y. (2021). Joint task offloading and resource allocation for multi-task multi-server NOMA-MEC networks. IEEE Access, 9, 16152–16163.

    Article  Google Scholar 

  15. Wang, J., Feng, D., Zhang, S., Liu, A., & Xia, X. G. (2021). Joint computation offloading and resource allocation for MEC-enabled IoT systems with imperfect CSI. IEEE Internet of Things Journal, 8(5), 3462–3475.

    Article  Google Scholar 

  16. Kovacevic, I., Harjula, E., Glisic, S., Lorenzo, B., & Ylianttila, M. (2021). Cloud and edge computation offloading for latency limited services. IEEE Access, 9, 55764–55776.

    Article  Google Scholar 

  17. Chen, X., Jiao, L., Li, W., & Fu, X. (2016). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808.

    Article  Google Scholar 

  18. Chen, Z., & Wang, X. (2020). Decentralized computation offloading for multi-user mobile edge computing: A deep reinforcement learning approach. Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-020-01801-6

    Article  Google Scholar 

  19. Tang, M., & Wong, V. W. S. (2022). Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE transactions on mobile computing, 21(6), 1985–1997.

    Article  Google Scholar 

  20. Gan, Z., Lin, R., & Zou, H. (2022). A multi-agent deep reinforcement learning approach for computation offloading in 5G mobile edge Computing. In: Proceedings of the 22nd IEEE international symposium on cluster, cloud and internet computing (pp. 645–648). https://doi.org/10.1109/CCGrid54584.2022.00074

  21. Huang, X., Leng, S., Maharjan, S., & Zhang, Y. (2021). Multi-agent deep reinforcement learning for computation offloading and interference coordination in small cell networks. IEEE Transactions on Vehicular Technology, 70(9), 9282–9293.

    Article  Google Scholar 

  22. Cao, Z., Zhou, P., Li, R., Huang, S., & Wu, D. (2020). Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile-edge computing in industry 4.0. IEEE Internet of Things Journal, 7(7), 6201–6213.

    Article  Google Scholar 

  23. Nguyen, D. C., Pathirana, P. N., Ding, M., & Seneviratne, A. (2021). Deep reinforcement learning for collaborative offloading in heterogeneous edge networks. In: Proceedings of the IEEE/ACM 21st international symposium on cluster, cloud and internet computing, (pp. 297–303). https://doi.org/10.1109/CCGrid51090.2021.00039

  24. Xiao, Y., Song, Y., & Liu, J. (2022). Towards energy efficient resource allocation: when green mobile edge computing meets multi-agent deep reinforcement learning. In: Proceedings of the IEEE international conference on communications (pp. 4056–4061). https://doi.org/10.1109/ICC45855.2022.9838659

  25. Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., & Whiteson, S. (2018). Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv preprint arXiv:1803.11485

  26. Oliehoek, F. A., & Amato, C. (2016). A concise introduction to decentralized POMDPs. Springer.

    Book  MATH  Google Scholar 

  27. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., & Graepel, T. (2017). Value-decomposition networks for cooperative multi-agent learning based on team reward. In: Proceedings of the 17th international conference on autonomous agents and multiagent systems (pp. 2085–2087)

  28. Hasselt, H. V., Guez, A., Silver, D. Deep reinforcement learning with double Q-learning. arXiv preprint arXiv:1509.06461

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (61702264, 62076130), the Open Research Project of State Key Laboratory of Novel Software Technology (Nanjing University, No. KFKT2022B28), the National Key R&D Program of China (No. 2020YFB1805503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmei Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Meng, S., Shang, J. et al. Value-based multi-agent deep reinforcement learning for collaborative computation offloading in internet of things networks. Wireless Netw (2023). https://doi.org/10.1007/s11276-023-03553-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-023-03553-9

Keywords

Navigation