Skip to main content
Log in

Securing FPGAs in IoT: a new run-time monitoring technique against hardware Trojan

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose a new run-time monitoring technique to detect hardware Trojan (HT) on working field-programmable gate array (FPGA), which is helpful for reinforcing the hardware security of IoT devices. First, we place multiple temperature sensors on FPGA and collect their value at each time interval. Then, we construct a predictive model which can estimate the distribution of sensor frequency in real-time. If the difference between the predicted value and the real one surpasses a dynamically updated threshold, an HT activation is reported. The experiment results reveal that our technique has high detection accuracy (≥ 98%), low false negative ratio (≤ 1.5%) and zero false positive ratio under various FPGA HT benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440. https://doi.org/10.1016/j.bushor.2015.03.008

    Article  Google Scholar 

  2. Gong, W., Zhang, X., Chen, Y., He, Q., Beheshti, A., Xu, X., Yan, C., & Qi, L., (2022). DAWAR: Diversity-aware web APIs recommendation with compatibility guarantee for mashup creation. In The 45th international ACM SIGIR conference on research and development in information retrieval (pp. 395–404). https://doi.org/10.1145/3477495.3531962.

  3. Gong, W., Zhang, W., Bilal, M., Chen, Y., Xu, X., & Wang, W. (2022). Efficient web APIs recommendation with privacy-preservation for mobile app development in industry 4.0. IEEE Transactions on Industrial Informatics, 18(9), 6379–6387. https://doi.org/10.1109/TII.2021.3133614

    Article  Google Scholar 

  4. Gong, W., Lv, C., Duan, Y., Liu, Z., Khosravi, M. R., Qi, L., & Dou, W. (2021). Keywords-driven web APIs group recommendation for automatic app service creation process. Software Practice and Experience, 51, 2337–2354. https://doi.org/10.1002/spe.2902

    Article  Google Scholar 

  5. Oh, H., Nam, K., Jeon, S., Cho, Y., & Paek, Y. (2021). MeetGo: A trusted execution environment for remote applications on FPGA. IEEE Access, 9, 51313–51324. https://doi.org/10.1109/ACCESS.2021.3069223

    Article  Google Scholar 

  6. Okada, M., Suzuki, T., Nishio, N., Waidyasooriya, H. M., & Hariyama, M. (2022). FPGA-accelerated searchable encrypted database management systems for cloud services. IEEE Transactions on Cloud Computing, 10(2), 1373–1385. https://doi.org/10.1109/TCC.2020.2969655

    Article  Google Scholar 

  7. Tan, B., Mok, K., Chang, J., Lee, W., & Hwang, S. O. (2022). RISC32-LP: Low-power FPGA-based IoT sensor nodes with energy reduction program analyzer. IEEE Internet of Things Journal, 9(6), 4214–4228. https://doi.org/10.1109/JIOT.2021.3103035

    Article  Google Scholar 

  8. Zhou, X., Liang, W., Yan, K., Li, W., Wang, K., Ma, J., & Jin, Q. (2022). Edge enabled two-stage scheduling based on deep reinforcement learning for Internet of Everything. IEEE Internet of Things Journal, Early Access. https://doi.org/10.1109/JIOT.2022.3179231

    Article  Google Scholar 

  9. Zhou, X., Hu, Y., Wu, J., Liang, W., Ma, J., & Jin, Q. (2022). Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial IoT. IEEE Transactions on Industrial Informatics, 19(1), 570–580. https://doi.org/10.1109/TII.2022.3170149

    Article  Google Scholar 

  10. Zhou, X., Yang, X., Ma, J., & Wang, K. (2022). Energy-efficient smart routing based on link correlation mining for wireless edge computing in IoT. IEEE Internet of Things Journal, 9(16), 14988–14997. https://doi.org/10.1109/JIOT.2021.3077937

    Article  Google Scholar 

  11. Liang, W., Hu, Y., Zhou, X., Pan, Y., & Wang, K. (2022). Variational few-shot learning for microservice-oriented intrusion detection in distributed industrial IoT. IEEE Transactions on Industrial Informatics, 18(8), 5087–5095. https://doi.org/10.1109/TII.2021.3116085

    Article  Google Scholar 

  12. Zhou, X., Liang, W., Li, W., Yan, K., Shimizu, S., & Wang, K. (2022). Hierarchical adversarial attacks against graph neural network based IoT network intrusion detection system. IEEE Internet of Things Journal, 9(12), 9310–9319. https://doi.org/10.1109/JIOT.2021.3130434

    Article  Google Scholar 

  13. Zhou, X., Xu, X., Liang, W., Zeng, Z., Shimizu, S., Yang, L. T., & Jin, Q. (2022). Intelligent small object detection based on digital twinning for smart manufacturing in industrial CPS. IEEE Transactions on Industrial Informatics, 18(2), 1377–1386.

    Article  Google Scholar 

  14. Lu, F., Zhang, Z., Guo, L., Chen, J., Zhu, Y., Yan, K., & Zhou, X. (2022). HFENet: A lightweight hand-crafted feature enhanced CNN for ceramic tile surface defect detection. International Journal of Intelligent Systems, 32(2), 10670–11069. https://doi.org/10.1002/int.22935

    Article  Google Scholar 

  15. Chen, J., Li, Y., Guo, L., Zhou, X., Zhu, Y., He, Q., Han, H., & Feng, Q. (2022). Machine learning techniques for CT imaging diagnosis of novel coronavirus. Neural Computing and Applications. (Special Issue). https://doi.org/10.1007/s00521-022-07709-0

    Article  Google Scholar 

  16. Kong, L., Li, G., Rafique, W., Shen, S., He, Q., Khosravi, M. R., Wang, R., & Qi, L. (2022). Time-aware missing healthcare data prediction based on ARIMA model. IEEE/ACM Transactions on Computational Biology and Bioinformatics (Early Access). https://doi.org/10.1109/TCBB.2022.3205064

    Article  Google Scholar 

  17. Liu, Y., Li, D., Wan, S., Wang, F., Dou, W., Xu, X., Li, S., Ma, R., & Qi, L. (2021). A long short-term memory-based model for greenhouse climate prediction. International Journal of Intelligent Systems, 37(1), 135–151. https://doi.org/10.1002/int.22620

    Article  Google Scholar 

  18. Kong, L., Wang, L., Gong, W., Yan, C., Duan, Y., & Qi, L. (2021). LSH-aware multitype health data prediction with privacy preservation in edge environment. World Wide Web Journal, 25, 1793–1808. https://doi.org/10.1007/s11280-021-00941-z

    Article  Google Scholar 

  19. Wang, F., Zhu, H., Srivastava, G., Li, S., Khosravi, M. R., & Qi, L. (2021). Robust collaborative filtering recommendation with user-item-trust records. IEEE Transactions on Computational Social Systems, 9(4), 986–996. https://doi.org/10.1109/TCSS.2021.3064213

    Article  Google Scholar 

  20. Qi, L., Lin, W., Zhang, X., Dou, W., Xu, X., & Chen, J. (2022). A correlation graph based approach for personalized and compatible web APIs recommendation in Mobile APP development. IEEE Transactions on Knowledge and Data Engineering (Early Access). https://doi.org/10.1109/TKDE.2022.3168611

    Article  Google Scholar 

  21. Chen, J., Qin, F., Lu, F., Guo, L., Li, C., Yan, K., & Zhou, X. (2022). CSPP-IQA: A multi-scale spatial pyramid pooling based approach for medical image quality assessment. Neural Computing and Applications (Special Issue). https://doi.org/10.1007/s00521-022-07874-2

    Article  Google Scholar 

  22. Guo, S., Wang, J., Chen, Z., Li, Y., & Lu, Z. (2020). Securing IoT space via hardware trojan detection. IEEE Internet of Things Journal, 7(11), 11115–11122. https://doi.org/10.1109/JIOT.2020.2994627

    Article  Google Scholar 

  23. Yoon, J., Seo, Y., Jang, J., Cho, M., Kim, J., Kim, H., & Kwon, T. (2018). A bitstream reverse engineering tool for FPGA hardware trojan detection. In Proceedings of the 2018 ACM SIGSAC conference on computer and communications security (pp. 2318–2320). https://doi.org/10.1145/3243734.3278487.

  24. Guo, X., Dutta, R. G., Jin, Y., Farahmandi F., & Mishra P. (2015). Pre-silicon security verification and validation: A formal perspective. In Proceedings of the 52nd annual design automation conference (pp. 1–6). https://doi.org/10.1145/2744769.2747939.

  25. Hu, W., Mao, B., Oberg, J., & Kastner, R. (2016). Detecting hardware trojans with gate-level information-flow tracking. Computer, 49(8), 44–52. https://doi.org/10.1109/MC.2016.225

    Article  Google Scholar 

  26. Huang, K., & He, Y. (2019). Trigger identification using difference-amplified controllability and dynamic transition probability for hardware trojan detection. IEEE Transactions on Information Forensics and Security, 15, 3387–3400. https://doi.org/10.1109/TIFS.2019.2946044

    Article  Google Scholar 

  27. Hicks, M., Finnicum, M., King, S. T., Martin, M. M. K., & Smith, J. M. (2010). Overcoming an untrusted computing base: Detecting and removing malicious hardware automatically. In IEEE symposium on security and privacy (pp. 159–163). https://doi.org/10.1109/SP.2010.18.

  28. Zhang, J., Yuan, F., Wei, L., Liu, Y., & Xu, Q. (2015). VeriTrust: Verification for hardware trust. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(7), 1148–1161. https://doi.org/10.1109/TCAD.2015.2422836

    Article  Google Scholar 

  29. Waksman, A., Suozzo, M., & Sethumadhavan, S. (2013) FANCI: identification of stealthy malicious logic using boolean functional analysis. In Proceedings of ACM SIGSAC conference on Computer & communications security (pp. 697–708). https://doi.org/10.1145/2508859.2516654.

  30. Zou, M., Cui, X., Shi, L., & Wu, K. (2017). Potential trigger detection for hardware trojans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(7), 1384–1395. https://doi.org/10.1109/TCAD.2017.2753201

    Article  Google Scholar 

  31. Salmani, H., Tehranipoor, M., & Plusquellic, J. (2011). A novel technique for improving hardware trojan detection and reducing trojan activation time. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 112–125. https://doi.org/10.1109/TVLSI.2010.2093547

    Article  Google Scholar 

  32. Nigh, C., & Orailoglu, A. (2020). Test pattern superposition to detect hardware Trojans. In 2020 design, automation & test in europe conference & exhibition (DATE) (pp. 25–30). https://doi.org/10.23919/DATE48585.2020.9116264.

  33. Zhang, T., Wang, J., Guo, S., & Chen, Z. (2019). A comprehensive FPGA reverse engineering tool-chain: From bitstream to RTL code. IEEE Access, 7, 38379–38389. https://doi.org/10.1109/ACCESS.2019.2901949

    Article  Google Scholar 

  34. He, J., Zhao, Y., Guo, X., & Jin, Y. (2017). Hardware trojan detection through chip-free electromagnetic side-channel statistical analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10), 2939–2948. https://doi.org/10.1109/TVLSI.2017.2727985

    Article  Google Scholar 

  35. Nguyen, L. N., Cheng, C., Prvulovic, M., & Zajić, A. (2019). Creating a backscattering side channel to enable detection of dormant hardware trojans. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(7), 1561–1574. https://doi.org/10.1109/TVLSI.2019.2906547

    Article  Google Scholar 

  36. Pyrgas, L., Pirpilidis, F., Panayiotarou, A., & Kitsos, P. (2017). Thermal sensor based hardware Trojan detection in FPGAs. In Euromicro conference on digital system design (pp. 268–272). https://doi.org/10.1109/DSD.2017.36.

  37. Forte, D., Bao, C., & Srivastava, A. (2013). Temperature tracking: An innovative run-time approach for hardware Trojan detection. IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2013, 532–535. https://doi.org/10.1109/ICCAD.2013.6691167

    Article  Google Scholar 

  38. Bao, C., Forte, D., & Srivastava, A. (2015). Temperature tracking: Toward robust run-time detection of hardware Trojans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(10), 1577–1585. https://doi.org/10.1109/TCAD.2015.2424929

    Article  Google Scholar 

  39. Zhao, H., Kwiat, L., Kwiat, K. A., Kamhoua, C. A., & Njilla, L. (2018). Applying chaos theory for runtime hardware Trojan monitoring and detection. IEEE Transactions on Dependable and Secure Computing, 17(4), 716–729. https://doi.org/10.1109/TDSC.2018.2864733

    Article  Google Scholar 

  40. Micco, L. D., Minchola, C., Leon-Franco, J. J., Boemo, E., & Antonelli, M. (2020). An annotated guide to utilize ring-oscillators as thermal sensor in FPGA technology. In Argentine conference on electronics (pp. 1–7). https://doi.org/10.1109/CAE48787.2020.9046367.

  41. Franco, J. L., Boemo, E., Castillo, E., & Parrilla, L. (2010). Ring oscillators as thermal sensors in FPGAs: Experiments in low voltage. In VI Southern programmable logic conference (pp. 35–37). https://doi.org/10.1109/SPL.2010.5483027.

  42. Smiti, A. (2020). A critical overview of outlier detection methods. Computer Science Review, 38, 100306–100308. https://doi.org/10.1016/j.cosrev.2020.100306

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, W. (2021). Technology of chip security monitoring based on physical field information. Master Thesis, University of Electronic Science and Technology of China, Chengdu. https://doi.org/10.27005/d.cnki.gdzku.2021.001980.

  44. Qin, Y., & Xia, T. (2017). Sensitivity analysis of ring oscillator based hardware Trojan detection. In 17th IEEE international conference on communication technology (pp. 1979–1981). https://doi.org/10.1109/ICCT.2017.8359975.

  45. Cao, Y., Chang, C., Chen, S. (2013). Cluster-based distributed active current timer for hardware Trojan detection. In IEEE international symposium on circuits and systems (ISCAS) (pp. 1010–1013). https://doi.org/10.1109/ISCAS.2013.6572020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Cheng or Chao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Feng, Q., Li, C. et al. Securing FPGAs in IoT: a new run-time monitoring technique against hardware Trojan. Wireless Netw (2023). https://doi.org/10.1007/s11276-023-03305-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-023-03305-9

Keywords

Navigation