Skip to main content
Log in

Indigo production goes green: a review on opportunities and challenges of fermentative production

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Indigo is a widely used dye in various industries, such as textile, cosmetics, and food. However, traditional methods of indigo extraction and processing are associated with environmental and economic challenges. Fermentative production of indigo using microbial strains has emerged as a promising alternative that offers sustainability and cost-effectiveness. This review article provides a critical overview of microbial diversity, metabolic pathways, fermentation strategies, and genetic engineering approaches for fermentative indigo production. The advantages and limitations of different indigo production systems and a critique of the current understanding of indigo biosynthesis are discussed. Finally, the potential application of indigo in other sectors is also discussed. Overall, fermentative production of indigo offers a sustainable and bio-based alternative to synthetic methods and has the potential to contribute to the development of sustainable and circular biomanufacturing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available upon request from the corresponding author. We are committed to ensuring the transparency and reproducibility of our research, and we welcome inquiries regarding access to the data used in this study.

References

  • Afsheen N, Khalil UR, Jahan N, Ijaz M, Manzoor A, Khan KM, Hina S (2018) Cardioprotective and metabolomic profiling of selected medicinal plants against oxidative stress. Oxid Med Cell Longev 2018:9819360

  • Agnihotri G, Gandhi S, Lio PA (2019) Colorful dyes and other vibrant topical creams as treatments for dermatological conditions. Drugs th Perspect 35:491–499

    Article  Google Scholar 

  • Ahn S, Park S, Kumar P, Choi KY (2023) Bio-indigo production using wild-type Acinetobacter sp. and indole-3-acetate monooxygenase (Iaca) expressed in Escherichia coli. J Biotechnol Bioprocess Eng 28:281–288

    Article  CAS  Google Scholar 

  • Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, Yumoto I (2010) Bacterial community characterization and dynamics of indigo fermentation. J FEMS Microbiol Ecol 74:174–183

    Article  CAS  Google Scholar 

  • Alemayehu D, Gordon LM, O’Mahony MM, O’Leary ND, Dobson AD (2004) Cloning and functional analysis by gene disruption of a novel gene involved in indigo production and fluoranthene metabolism in Pseudomonas alcaligenes PA-10. FEMS Microbiol Lett 239:285–293

    Article  CAS  PubMed  Google Scholar 

  • Alfieri A, Malito E, Orru R, Fraaije MW, Mattevi A (2008) Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase. Proc Natl Acad Sci 105:6572–6577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameria SPL, Jung HS, Kim HS, Han SS, Kim HS, Lee JH (2015) Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnol Lett 37:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Berry A, Dodge TC, Pepsin M, Weyler W (2002) Application of metabolic engineering to improve both the production and use of biotech indigo. J Ind Microbiol Biotechnol 28:127–133

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Samanta S, Jain R (2000) Indigo production by naphthalene-degrading bacteria. J Lett Appl Microbiol 31:5–9

    Article  CAS  Google Scholar 

  • Chen FC (2018) Organic Semiconductors, in: Guenther, B.D, Steel, D.G. (Eds.), Encyclopedia of Modern Optics (Second Edition). Elsevier, Oxford, pp. 220–231

  • Chen T, Wang X, Zhuang L, Shao A, Lu Y, Zhang H (2021) Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis. Microb Cell Fact 20:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Yin S, Chen M, Sun B, Hao S, Wang C (2016) Enhancing indigo production by over-expression of the styrene monooxygenase in Pseudomonas putida. Curr Microbiol 73:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cho DH, Kim HJ, Oh SJ, Hwang JH, Shin N, Bhatia SK, Yoon JJ, Jeon JM, Yang YH (2023) Strategy for efficiently utilizing Escherichia coli cells producing isobutanol by combining isobutanol and indigo production systems. J Biotechnol 367:62–70

    Article  CAS  PubMed  Google Scholar 

  • Choi K-Y (2020) A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications. Dyes Pigm 181:108570

    Article  CAS  Google Scholar 

  • Choi S, Kim JK, Cho EH, Kim YC, Kim JI, Kim SW (2003) A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. J Biochem Biophys Res Commun 306:930–936

    Article  CAS  Google Scholar 

  • Cui H, Xie W, Hua Z, Cao L, Xiong Z, Tang Y, Yuan Z (2022) Recent advancements in natural plant colorants used for hair dye applications: a review. Molecules 27:8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Ma Q, Li Y, Zhou D, Yang B, Qu Y (2019) Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production. J Bioprocess Biosyst Eng 42:1963–1971

    Article  CAS  Google Scholar 

  • Dhanraj D, Kaliaperumal S (2022) Comparative evaluation of various extraction methods on quantity and quality of Indigo dye from Indigofera tinctoria L. J Trop Agric 59:2

    Google Scholar 

  • Doukyu N, Nakano T, Okuyama Y, Aono R (2002) Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole. J Appl Microbiol Biotechnol 58:543–546

    Article  CAS  Google Scholar 

  • Doukyu N, Toyoda K, Aono R (2003) Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter Sp strain ST-550 in a water-organic solvent two-phase system. Appl Microbiol Biotechnol 60:720–725

    Article  CAS  PubMed  Google Scholar 

  • Du L, Yue J, Zhu Y, Yin S (2022) Production of indigo by recombinant Escherichia coli with expression of monooxygenase, tryptophanase, and molecular chaperone. Foods 11:2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua A, Chauhan K, Pathak H (2014) Biotransformation of indigo pigment by indigenously isolated Pseudomonas sp. HAV-1 and assessment of its antioxidant property. J Biotechnol Res Int 2014:109249

    Google Scholar 

  • Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222(4620):167–169

    Article  CAS  PubMed  Google Scholar 

  • Fabara AN, Fraaije MW (2020a) An overview of microbial indigo-forming enzymes. J Appl Microbiol Biotechnol 104:925–933

    Article  CAS  Google Scholar 

  • Fabara AN, Fraaije MW (2020b) Production of indigo through the use of a dual-function substrate and a bifunctional fusion enzyme. Enz Microb Technol 142:109692

    Article  CAS  Google Scholar 

  • Gill H, Yim R, Lee HKK, Mak V, Lin SY, Kho B, Yip SF, Lau JSM, Li W, Ip HW, Hwang YY, Chan TSY, Tse E, Au WY, Kumana CR, Kwong YL (2018) Long-term outcome of relapsed acute promyelocytic Leukemia treated with oral arsenic trioxide-based reinduction and maintenance regimens: a 15-year prospective study. Cancer 124:2316–2326

    Article  CAS  PubMed  Google Scholar 

  • Głowacki ED, Voss G, Sariciftci NS (2013) 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics. Adv Mater 25:6783–6800

    Article  PubMed  Google Scholar 

  • Gonçalves GM, Wenceslau LR, Mendonça A (2023) The use of medicinal plants for the treatment of psoriasis: a systematic review and meta-analysis. Indian J Dermatol Venereol Leprol 89:543–548

    Article  PubMed  Google Scholar 

  • Gray P (1928) The formation of indigotin from indol by soil bacteria. J Proc Royal Soc Lond Ser B Containing Papers Biol Character 102(717):263–280

    Article  CAS  Google Scholar 

  • Groeneveld M, van Beek HL, Duetz WA, Fraaije MW (2016) Identification of a novel oxygenase capable of regiospecific hydroxylation of d-limonene into (+)-trans-carveol. Tetrahedron 72:7263–7267

    Article  CAS  Google Scholar 

  • Ham S, Cho DH, Oh SJ, Hwang JH, Kim HJ, Shin N, Ahn J, Choi KY, Bhatia SK, Yang YH (2023) Enhanced production of bio-indigo in engineered Escherichia coli, reinforced by cyclopropane-fatty acid-acyl-phospholipid synthase from psychrophilic Pseudomonas sp. B14-6. J Biotechnol 366:1–9

    Article  CAS  PubMed  Google Scholar 

  • Han GH, Shin HJ, Kim SW (2008) Optimization of bio-indigo production by recombinant E. Coli harboring fmo gene. Enz Microb Technol 42:617–623

  • Han GH, Bang SE, Babu BK, Chang M, Shin HJ, Kim SW (2011) Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process Biochem 46:788–791

    Article  CAS  Google Scholar 

  • Han GH, Gim GH, Kim W, Seo SI, Kim SW (2012) Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation. J Biotechnol 164:179–187

    Article  CAS  PubMed  Google Scholar 

  • Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D (2018) Two-component FAD-dependent monooxygenases: current knowledge and biotechnological opportunities. Biology (Basel) 7:42

    CAS  PubMed  Google Scholar 

  • Hsu TM, Welner DH, Russ ZN, Cervantes B, Prathuri RL, Adams PD, Dueber JE (2018) Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat Chem Biol 14:256–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard TD, Murray IA, Perdew GH (2015) Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metab Dispos 43:1522–1535

    Article  PubMed  PubMed Central  Google Scholar 

  • Irimia-Vladu M, Głowacki ED, Troshin PA, Schwabegger G, Leonat L, Susarova DK, Krystal O, Ullah M, Kanbur Y, Bodea MA, Razumov VF, Sitter H, Bauer S, Sariciftci NS (2012) Indigo - A natural pigment for high performance Ambipolar Organic Field Effect transistors and circuits. Adv Mater 24:375–380

    Article  CAS  PubMed  Google Scholar 

  • Jie C, Luo Z, Chen H, Wang M, Yan C, Mao ZF, Xiao GK, Kurihara H, Li YF, He RR (2017) Indirubin, a bisindole alkaloid from Isatis Indigotica, reduces H1N1 susceptibility in stressed mice by regulating MAVS signaling. Oncotarget 8:105615–105629

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabish AK, Abate MT, Alemar ZA, Girmay S (2023) the importance of natural indigo dye and its revitalization and ethiopian potential for indigo growing. J Adv Mater Sci Eng 2023

  • Kaplan G, Seferoğlu Z (2023) The synthetic approaches for preparation of indigo and applications in denim industry. J Curr Organic Syn 20:361–364

    Article  CAS  Google Scholar 

  • Kataoka M, Hirata K, Kunikata T, Ushio S, Iwaki K, Ohashi K, Ikeda M, Kurimoto M (2001) Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum Tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J Gastroenterol 36:5–9

    Article  CAS  PubMed  Google Scholar 

  • Kawai S, Iijima H, Shinzaki S, Hiyama S, Yamaguchi T, Araki M, Iwatani S, Shiraishi E, Mukai A, Inoue T, Hayashi Y, Tsujii M, Motooka D, Nakamura S, Iida T, Takehara T (2017) Indigo Naturalis ameliorates murine dextran sodium sulfate-induced Colitis via aryl hydrocarbon receptor activation. J Gastroenterol 52:904–919

    Article  CAS  PubMed  Google Scholar 

  • Khambhati DP, Nelson TL (2022) Semiconductive materials for organic electronics and bioelectronics from renewable resources. In: Marrocchi A (ed) Sustainable strategies in Organic Electronics. Woodhead Publishing, pp 209–227

  • Kim HJ, Jang S, Kim J, Yang YH, Kim YG, Kim BG, Choi KY (2017) Biosynthesis of indigo in Escherichia coli expressing self-sufficient CYP102A from Streptomyces cattleya. Dyes Pig 140:29–35

    Article  CAS  Google Scholar 

  • Kim J, Lee PG, Jung EO, Kim BG (2018) In vitro characterization of CYP102G4 from Streptomyces cattleya: a self-sufficient P450 naturally producing indigo. Biochim Biophys Acta Proteins Proteom 1866:60–67

    Article  CAS  PubMed  Google Scholar 

  • Klimovich IV, Leshanskaya LI, Troyanov SI, Anokhin DV, Novikov DV, Piryazev AA, Ivanov DA, Dremova NN, Troshin PA (2014) Design of indigo derivatives as environment-friendly organic semiconductors for sustainable organic electronics. J Mater Chem C 2:7621–7631

    Article  CAS  Google Scholar 

  • Klimovich IV, Zhilenkov AV, Кuznetsova LI, Frolova LA, Yamilova OR, Troyanov SI, Lyssenko KA, Troshin PA (2021) Novel functionalized indigo derivatives for organic electronics. Dyes Pig 186:108966

    Article  CAS  Google Scholar 

  • Kubota K, Imai Y, Okuyama T, Ishiyama Y, Ueno S, Kario K (2023) Dramatically improved severe pulmonary arterial Hypertension caused by Qing-Dai (Chinese Herbal Drug) for Ulcerative Colitis. Int Heart J 64:316–320

    Article  PubMed  Google Scholar 

  • Kugel S, Baunach M, Baer P, Ishida-Ito M, Sundaram S, Xu Z, Groll M, Hertweck C (2017) Cryptic indole hydroxylation by a non-canonical terpenoid cyclase parallels bacterial xenobiotic detoxification. Nat Commun 8:15804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444

    Article  CAS  PubMed  Google Scholar 

  • Li QS, Schwaneberg U, Fischer P, Schmid RD (2000) Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chemistry 6:1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Li Shan, Anthony B, Cunningham RF, Yuhua W (2019) Identity blues: the ethnobotany of the indigo dyeing by Landian Yao (Iu Mien) in Yunnan, Southwest China. J Ethnobiol Ethnomedicine 15(1):1–14

  • Li Y, Lin Y, Wang F, Wang J, Shoji O, Xu J (2023) Construction of biocatalysts using the P450 scaffold for the synthesis of indigo from indole. Int J Mole Sci 24:2395

    Article  CAS  Google Scholar 

  • Linke JA, Rayat A, Ward JM (2023) Production of indigo by recombinant bacteria. J Bioresources Bioprocessing 10:20

    Article  Google Scholar 

  • Manousiadis PP, Yoshida K, Turnbull GA, Samuel IDW (2020) Organic semiconductors for visible light communications. Philosophical Trans Royal Soc A: Math Phy Eng Sci 378:20190186

    Article  CAS  Google Scholar 

  • Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Pezzella C, Sener ME, Kılıç S, van Berkel WJH, Guallar V, Lucas MF, Zuhse R, Ludwig R, Hollmann F, Fernández-Fueyo E, Record E, Faulds CB, Tortajada M, Winckelmann I, Rasmussen JA, Gelo-Pujic M, Gutiérrez A, del Río JC, Rencoret J, Alcalde M (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35:815–831

    Article  PubMed  Google Scholar 

  • Mercadal JPR, Isaac P, Siñeriz F, Ferrero MA (2010) Indigo production by Pseudomonas sp. J26, a marine naphthalene-degrading strain. J Basic Microbiol 50:290–293

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Würsten M, Schmid A, Kohler HP, Witholt B (2002) Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase. J Biol Chem 277:34161–34167

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Ruiz E, Hernáez MJ, Martínez-Pérez O, Santero E (2003) Identification and functional characterization of Sphingomonas macrogolitabida strain TFA genes involved in the first two steps of the tetralin catabolic pathway. J Bacteriol 185:2026–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdock D, Ensley BD, Serdar C, Thalen M (1993) Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Bio/Technology 11:381–386

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ (2020) Modern traditional Chinese medicine: identifying, defining and usage of TCM components. Adv Pharmacol 87:113–158

    Article  CAS  PubMed  Google Scholar 

  • Nordlund I, Powlowski J, Shingler V (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6826–6833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor KE, Hartmans S (1998) Indigo formation by aromatic hydrocarbon-degrading bacteria. Biotechnol Lett 20:219–223

    Article  Google Scholar 

  • O’Connor KE, Dobson AD, Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 63:4287–4291

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Z, Tao D, Ren M, Cheng L (2023) A combinational optimization method for efficient production of indigo by the recombinant Escherichia coli with expression of monooxygenase and malate dehydrogenase. Foods 12:502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak H, Madamwar D (2010) Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric. Appl Biochem Biotechnol 160:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Pattanaik L, Padhi SK, Hariprasad P, Naik SN (2020) Life cycle cost analysis of natural indigo dye production from Indigofera tinctoria L. plant biomass: a case study of India. J Clean Technol Environ Policy 2:1639–1654

    Article  Google Scholar 

  • Pazmiño DET, Snajdrova R, Rial DV, Mihovilovic MD, Fraaije MW (2007) Altering the substrate specificity and enantioselectivity of phenylacetone monooxygenase by structure-inspired enzyme redesign. Adv Syn Catal 349:361–1368

    Article  Google Scholar 

  • Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, Zhang Y (2023) Overexpression of chaperones GroEL/ES from Escherichia coli enhances indigo biotransformation production of cytochrome P450 BM3 mutant. Biotechnol Lett 45:993–1000

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Shi S, Zhou H, Ma Q, Li X, Zhang X, Zhou J (2012a) Characterization of a novel phenol hydroxylase in indoles biotranformation from a strain Arthrobacter sp. W1. PLoS ONE 7:e44313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Y, Zhang X, Ma Q, Ma F, Zhang Q, Li X, Zhou H, Zhou J (2012b) Indigo biosynthesis by Comamonas sp. MQ. Biotechnol Lett 34:353–357

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Zhang Z, Ma Q, Shen E, Shen W, Wang J, Cong L, Li D, Liu Z, Li H (2015) Biotransformation of indole and its derivatives by a newly isolated Enterobacter sp. M9Z. J Appl Biochem Biotechnol (N Y) 175:3468–3478

    Article  CAS  Google Scholar 

  • Rotilio L, Swoboda A, Ebner K, Rinnofner C, Glieder A, Kroutil W, Mattevi A (2021) Structural and biochemical studies enlighten the unspecific peroxygenase from Hypoxylon sp. EC38 as an efficient oxidative biocatalyst. ACS Catal 11:11511–11525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadauskas M, Statkevičiūtė R, Vaitekūnas J, Petkevičius V, Časaitė V, Gasparavičiūtė R, Meškys R (2020) Enzymatic synthesis of novel water-soluble indigoid compounds. Dyes Pigm 173:107882

    Article  CAS  Google Scholar 

  • Saikhao L, Setthayanond J, Karpkird T, Bechtold T, Suwanruji P (2018) Green reducing agents for indigo dyeing on cotton fabrics. J Clean Prod 197:106–113

    Article  CAS  Google Scholar 

  • Schimper CB, Ibanescu C, Bechtold T (2011) Surface activation of dyed fabric for cellulase treatment. Biotechnol J 6:1280–1285

    Article  CAS  PubMed  Google Scholar 

  • Stasiak N, Kukula-Koch W, Glowniak K (2014) Modern industrial and pharmacological applications of indigo dye and its derivatives-a review. Acta Pol Pharm 71:215–221

    PubMed  Google Scholar 

  • Tennoune N, Andriamihaja M, Blachier F (2022) Production of indole and indole-related compounds by the intestinal microbiota and consequences for the host: the good, the bad, and the ugly. Microorganisms 10:930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai YC, Lee CL, Yen HR, Chang YS, Lin YP, Huang SH, Lin CW (2020) Antiviral action of tryptanthrin isolated from strobilanthes cusia leaf against human coronavirus NL63. Biomolecules 10:366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Z, de Fátima Silva Lopes H, Igarashi K, Yumoto I (2019) Characterization of the microbiota in long- and short-term natural indigo fermentation. J Ind Microbiol Biotechnol 46:1657–1667

    Article  CAS  PubMed  Google Scholar 

  • Woo HJ, Sanseverino J, Cox CD, Robinson KG, Sayler GS (2000) The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1. J Microbiol Methods 40:181–191

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Tian S, Liu J, Huang S, Yang M, Yang X, Xu R, Lin J, Han L, Zhang D (2023) Combination therapy with indigo and indirubin for ulcerative Colitis via reinforcing intestinal barrier function. Oxid Med Cell Longev 2023:2894695

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Inoue Y, Takaki U, Suzuki HJ (2011) Development of a practical one-pot synthesis of indigo from indole. Bull Chem Soc Jap 84:82–89

    Article  CAS  Google Scholar 

  • Yen KM, Karl M, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA, Chen KK (1991) Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J Bacteriol 173:5315–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Chen H, Yan M, Li Z, Yang R, Li Y, Wang Y, Guan J, Mao H, Wang Y (2021a) Efficient bioproduction of indigo and indirubin by optimizing a novel terpenoid cyclase XiaI in Escherichia coli. ACS Omega 6:20569–20576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokote A, Imazu N, Umeno J, Kawasaki K, Fujioka S, Fuyuno Y, Matsuno Y, Moriyama T, Miyawaki K, Akashi K, Kitazono T, Torisu T (2023) Ferroptosis in the colon epithelial cells as a therapeutic target for ulcerative Colitis. J Gastroenterol 58:868–882

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang L, Cunningham AB, Shi Y, Wang Y (2019) Island blues: indigenous knowledge of indigo-yielding plant species used by Hainan Miao and Li dyers on Hainan Island, China. J Ethnobiol Ethnomed 15:1–9

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the KU Research Professor Program of Konkuk University, Seoul, South Korea. This research was supported by the National Research Foundation of Korea (NRF), the Ministry of Science and ICT (NRF-2022R1A2C2003138, NRF-2022M3I3A1082545), and the R&D Program of MOTIE/KEIT (Grant No. 20009508 and 20014350).

Funding

This study received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Neha Chandel: Roles/Writing - original draft; and Writing - review & editing, Bharat Bhushan Singh: Roles/Writing - original draft; and Writing - review & editing, Chetna Dureja: Roles/Writing - original draft; and Writing - review & editing, Yung-Hun Yang: Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; and Writing - review & editing, Shashi Kant Bhatia: Conceptualization; Data curation; Formal analysis; Methodology; Software; Validation; Visualization; Roles/Writing - original draft; and Writing - review & editing.

Corresponding author

Correspondence to Shashi Kant Bhatia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandel, N., Singh, B.B., Dureja, C. et al. Indigo production goes green: a review on opportunities and challenges of fermentative production. World J Microbiol Biotechnol 40, 62 (2024). https://doi.org/10.1007/s11274-023-03871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03871-2

Keywords

Navigation