Skip to main content
Log in

Exploring the hidden treasures of Nitella hyalina: a comprehensive study on its biological compounds, nutritional profile, and unveiling its antimicrobial, antioxidative, and hypoglycemic properties

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55–46.35% and 35.39–41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg− 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg− 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  • Adhoni SA, Thimmappa SC, Kaliwal BB (2016) Phytochemical analysis and antimicrobial activity of Chorella vulgaris isolated from Unkal Lake. J Coast Life Med 4:368–373

    Article  CAS  Google Scholar 

  • Akbarzadeh S, Gholampour H, Farzadinia P et al (2018) Anti-diabetic effects of Sargassum oligocystum on streptozotocin-induced diabetic rat. Iran J Basic Med Sci 21:342

    PubMed  PubMed Central  Google Scholar 

  • Al-Adilah H, Feiters MC, Carpenter LJ et al (2022) Halogens in seaweeds: Biological and environmental significance. Phycology 2:132–171

    Article  Google Scholar 

  • Al-Awar A, Kupai K, Veszelka M et al (2016) Experimental diabetes mellitus in different animal models. J Diabetes Res 2016

  • Allen HK, Trachsel J, Looft T, Casey TA (2014) Finding alternatives to antibiotics. Ann N Y Acad Sci 1323:91–100

    Article  PubMed  Google Scholar 

  • Alreshidi M, Badraoui R, Adnan M et al (2023) Phytochemical profiling, antibacterial, and antibiofilm activities of Sargassum sp.(brown algae) from the Red Sea: ADMET prediction and molecular docking analysis. Algal Res 69:102912

    Article  Google Scholar 

  • Amenu D (2014) Antimicrobial activity of medicinal plant extracts and their synergistic effect on some selected pathogens. Am J Ethnomedicine 1:18–29

    Google Scholar 

  • Anbuchezhian R, Karuppiah V, Li Z (2015) Prospect of marine algae for production of industrially important chemicals. Algal Biorefinery an Integr Approach 195–217

  • Ayaz M, Subhan F, Ahmed J et al (2015) Citalopram and venlafaxine differentially augments antimicrobial properties of antibiotics. Acta Pol Pharm 72:1269–1278

    CAS  Google Scholar 

  • Ayaz M, Junaid M, Ullah F et al (2017) GC-MS analysis and gastroprotective evaluations of crude extracts, isolated saponins, and essential oil from Polygonum hydropiper L. Front Chem 5:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Babich O, Sukhikh S, Larina V et al (2022) Algae: study of edible and biologically active fractions, their properties and applications. Plants 11:780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakar K, Mohamad H, Latip J et al (2017) Fatty acids compositions of Sargassum granuliferum and Dictyota dichotoma and their anti-fouling activities. J Sustain Sci Manag 12:8–16

    CAS  Google Scholar 

  • Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhniya B, Lakhdar F, Rezzoum N, Etahiri S (2022) GC/MS analysis and antibacterial potential of macroalgae extracts harvested on moroccan atlantic coast. Egypt J Chem 65:171–179. https://doi.org/10.21608/EJCHEM.2022.117053.5301

    Article  Google Scholar 

  • Bhatia R, Narain JP (2010) The growing challenge of antimicrobial resistance in the South-East Asia Region-Are we losing the battle? Indian J Med Res 132:482

    PubMed  PubMed Central  Google Scholar 

  • Bhuyar P, Rahim MHA, Sundararaju S et al (2020) Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef Univ J Basic Appl Sci 9:1–15

    Article  Google Scholar 

  • Birgersson PS, Oftebro M, Strand WI et al (2023) Sequential extraction and fractionation of four polysaccharides from cultivated brown algae Saccharina latissima and Alaria esculenta. Algal Res 69:102928

    Article  Google Scholar 

  • Bouba AA, Njintang YN, Scher J, Mbofung CMF (2010) Phenolic compounds and radical scavenging potential of twenty cameroonian spices. Agric Biol J North Am 1:213–224

    Article  Google Scholar 

  • Buedenbender L, Astone FA, Tasdemir D (2020) Bioactive molecular networking for mapping the antimicrobial constituents of the baltic brown alga fucus vesiculosus. Mar Drugs 18:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann AH, Camus C, Infante J et al (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406

    Article  Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP et al (2007) Metabolites from algae with economical impact. Comp Biochem Physiol Part C Toxicol Pharmacol 146:60–78

    Article  Google Scholar 

  • Chai T-T, Wong F-C (2012) Whole-plant profiling of total phenolic and flavonoid. J Med Plants Res 6:1730–1735

    CAS  Google Scholar 

  • Chantiratikul P, Meechai P, Nakbanpotec W (2009) Antioxidant activities and phenolic contents of extracts from Salvinia molesta and Eichornia crassipes. Res J Biol Sci 4:1113–1117

    Google Scholar 

  • Choudhury AA, Rajeswari VD (2021) Gestational diabetes mellitus-A metabolic and reproductive disorder. Biomed Pharmacother 143:112183

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino D (2015) Infrared spectroscopy as a versatile analytical tool for the quantitative determination of antioxidants in agricultural products, foods and plants. Antioxidants 4:482–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das J, Ghosh K (2023) Nutrient profiling of five freshwater algae for their prospective use as fish feed ingredients. Algal Res 103173

  • Davoodbasha M, Edachery B, Nooruddin T et al (2018) An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microb Pathog 115:233–238

    Article  CAS  PubMed  Google Scholar 

  • De Quiros AR-B, Lage-Yusty MA, López-Hernández J (2010) Determination of phenolic compounds in macroalgae for human consumption. Food Chem 121:634–638

    Article  Google Scholar 

  • Donga S, Chanda S (2022) Caesalpinia crista seeds mediated green synthesis of zinc oxide nanoparticles for antibacterial, antioxidant, and anticancer activities. Bionanoscience 12:451–462

    Article  Google Scholar 

  • El-Sheekh MM, Daboor SM, Swelim MA, Mohamed S (2014) Production and characterization of antimicrobial active substance from Spirulina platensis. Iran J Microbiol 6:112

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Segovia I, Lerma-García MJ, Fuentes A, Barat JM (2018) Characterization of spanish powdered seaweeds: composition, antioxidant capacity and technological properties. Food Res Int 111:212–219

    Article  PubMed  Google Scholar 

  • Fernando IPS, Kim M, Son K-T et al (2016) Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J Med Food 19:615–628

    Article  PubMed  Google Scholar 

  • Garayemi S, Raeisi F (2020) Graphene Oxide as a Docking Station for Modern Drug Delivery System. By Ulva lactuca species study its antimicrobial, anti-fungal and anti-blood cancer activity. Adv Appl NanoBio-Technologies 1:53–62

    Google Scholar 

  • García A (1994) Charophyta: their use in paleolimnology. J Paleolimnol 10:43–52

    Article  Google Scholar 

  • Ghosh S, Sarkar T, Pati S et al (2022) Novel bioactive compounds from marine sources as a tool for functional food development. Front Mar Sci 9:832957

    Article  Google Scholar 

  • Goshtasbi H, Okolodkov YB, Movafeghi A et al (2023) Harnessing microalgae as sustainable cellular factories for biopharmaceutical production. Algal Res 103237

  • Hassan S, Meenatchi R, Pachillu K et al (2022) Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 62:999–1029

    Article  PubMed  Google Scholar 

  • Hayes ML, Berkovitz BKB (1979) The reduction of fissure caries in Wistar rats by a soluble salt of nonanoic acid. Arch Oral Biol 24:663–666

    Article  CAS  PubMed  Google Scholar 

  • Hilda S, Sheeja SS, Rani G (2014) In vitro antioxidant activity of freshwater green macroalgae, Nitella tenuissima (desv.) Kiitz. Nat Pharm Technol 4:11–15

    Google Scholar 

  • Hossain MT, Sohag AAM, Haque MN et al (2021) Nutritional value, phytochemical profile, antioxidant property and agar yielding potential of macroalgae from Coasts of Cox’s Bazar and St. Martin’s island of Bangladesh. J Aquat Food Prod Technol 30:217–227

    Article  CAS  Google Scholar 

  • Hu Y, Chen J, Hu G et al (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 13:202–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussein AO, Hameed IH, Jasim H, Kareem MA (2015) Determination of alkaloid compounds of Ricinus communis by using gas chromatography-mass spectroscopy (GC-MS). J Med Plants Res 9:349–359

    Article  CAS  Google Scholar 

  • Imran M, Iqbal A, Badshah SL et al (2023) Chemical and Nutritional Profiling of the Seaweed Dictyota dichotoma and evaluation of its antioxidant, Antimicrobial and hypoglycemic potentials. Mar Drugs 21:273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob-Lopes E, Maroneze MM, Deprá MC et al (2019) Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Curr Opin Food Sci 25:1–7

    Article  Google Scholar 

  • Jesus A, Correia-da-Silva M, Afonso C et al (2019) Isolation and potential biological applications of haloaryl secondary metabolites from macroalgae. Mar Drugs 17:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimoh FO, Adedapo AA, Afolayan AJ (2011) Comparison of the nutritive value, antioxidant and antibacterial activities of Sonchus asper and Sonchus oleraceus. Rec Nat Prod 5:29–42

    CAS  Google Scholar 

  • Kalasariya HS, Patel NB, Yadav A et al (2021) Characterization of fatty acids, polysaccharides, amino acids, and minerals in marine macroalga chaetomorpha crassa and evaluation of their potentials in skin cosmetics. Molecules 26:7515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim RAA, Habib HA (2022) Awareness regarding diabetes risk factors, prevention and management among community members in Diyala/Baqubah. Al-Kindy Coll Med J 18:24–29

    Article  Google Scholar 

  • Karimzadeh K, Zahmatkesh A (2021) Phytochemical screening, antioxidant potential, and cytotoxic effects of different extracts of red algae (Laurencia snyderiae) on HT29 cells. Res Pharm Sci 16:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Kepel RC, Lumingas LJL, Tombokan JL, Mantiri DMH (2021) Biomineral characterization and phytochemical profile of green algae Halimeda macroloba and Halimeda opuntia from coastal waters of Tanjung Merah, Bitung City, North Sulawesi, Indonesia. Aquac Aquarium. Conserv Legis 14:3217–3230

    Google Scholar 

  • KiliÇ T, Dırmencı T, Gören AC (2007) Fatty acid composition of seeds of some species of Nepeta L. Nat Prod Res 21:465–468

    Article  PubMed  Google Scholar 

  • Kim S-K, Karagozlu MZ (2011) Marine algae: natural product source for gastrointestinal cancer treatment. Adv Food Nutr Res 64:225–233

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanasenthil S, Vinothkumar T, Geetharamani D et al (2014) Fucoidan—a novel α-amylase inhibitor from Turbinaria ornata with relevance to NIDDM therapy. Biocatal Agric Biotechnol 3:66–70

    Article  Google Scholar 

  • Malve H (2016) Exploring the ocean for new drug developments: Marine pharmacology. J Pharm Bioallied Sci 8:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrez DA, Sultan YY, Naguib MM, Higazy AM (2022) Antimicrobial activity, cytotoxicity and chemical constituents of the Freshwater Microalga Oscillatoria princeps. Biointerface Res Appl Chem 12:961–977

    CAS  Google Scholar 

  • Mathabe MC, Nikolova RV, Lall N, Nyazema NZ (2006) Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa. J Ethnopharmacol 105:286–293

    Article  CAS  PubMed  Google Scholar 

  • Matharasi A, Kumar RD, Prabakaran G, Kumar PS (2018) Phytochemical screening and antimicrobial activity of marine microalgae Tetraselmis sp. Int J Pharm Biol Sci 8:85–90

    CAS  Google Scholar 

  • Mishra P, Gupta N, Singh M, Tiwari D (2023) Bioactive Compounds synthesized by Algae: current development and prospects as Biomedical Application in the Pharmaceutical Industry. Next-Generation Algae Vol II Appl Med Pharm Ind 41–75

  • Moshfegh A, Salehzadeh A, Sadat Shandiz SA et al (2019) Phytochemical analysis, antioxidant, anticancer and antibacterial properties of the Caspian Sea red macroalgae, Laurencia caspica. Iran J Sci Technol Trans Sci 43:49–56

    Article  Google Scholar 

  • Munir M, Qureshi R, Bibi M, Khan AM (2019) Pharmaceutical aptitude of Cladophora: a comprehensive review. Algal Res 39:101476

    Article  Google Scholar 

  • Murugi NJ, Piero NM, Mwiti KC et al (2012) Hypoglycemic effects of Caesalpinia volkensii on alloxan-induced diabetic mice

  • Nutautaitė M, Vilienė V, Racevičiūtė-Stupelienė A et al (2021) Freshwater cladophora glomerata biomass as promising protein and other essential nutrients source for high quality and more sustainable feed production. Agriculture 11:582

    Article  Google Scholar 

  • Odabasoglu F, Aslan A, Cakir A et al (2004) Comparison of antioxidant activity and phenolic content of three lichen species. Phyther Res An Int J Devoted to Pharmacol Toxicol Eval Nat Prod Deriv 18:938–941

    Google Scholar 

  • Onwuka GI (2005) Food analysis and instrumentation: theory and practice. Napthali prints

  • Palani K, Balasubramanian B, Malaisamy A et al (2022) Sulfated Polysaccharides Derived from Hypnea valentiae and Their Potential of Antioxidant, Antimicrobial, and Anticoagulant Activities with In Silico Docking. Evidence-Based Complement Altern Med 2022

  • Penesyan A, Kjelleberg S, Egan S (2010) Development of novel drugs from marine surface associated microorganisms. Mar Drugs 8:438–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Rodríguez F, Mercanoglu Taban B (2019) A state-of-art review on multi-drug resistant pathogens in foods of animal origin: risk factors and mitigation strategies. Front Microbiol 10:2091

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaza M, Santoyo S, Jaime L et al (2010) Screening for bioactive compounds from algae. J Pharm Biomed Anal 51:450–455

    Article  CAS  PubMed  Google Scholar 

  • Pourmorad F, Hosseinimehr SJ, Shahabimajd N (2006) Antioxidant activity, phenol and flavonoid contents of some selected iranian medicinal plants. Afr J Biotechnol 5

  • Prashantkumar P, Angadi SB, Vidyasagar GM (2006) Antimicrobial activity of Blue-Green and Green Algae. Indian J Pharm Sci 68

  • Priyadharshini S, Bragadeeswaran S, Prabhu K, Ran SS (2011) Antimicrobial and hemolytic activity of seaweed extracts Ulva fasciata (Delile 1813) from Mandapam, Southeast coast of India. Asian Pac J Trop Biomed 1:S38–S39

    Article  Google Scholar 

  • Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M (2016) The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J Trop Med 9:825–831

    Article  CAS  PubMed  Google Scholar 

  • Raja R, Hemaiswarya S, Arunkumar K, Carvalho IS (2016) Antioxidant activity and lipid profile of three seaweeds of Faro, Portugal. Brazilian J Bot 39:9–17

    Article  Google Scholar 

  • Ravikumar S, Anburajan L, Meena B (2016) Antibacterial activity of Ulva reticulata from southwest coast of Kanyakumari, India. J Coast Life Med 4:246–247

    Article  CAS  Google Scholar 

  • Remya RR, Samrot AV, Kumar SS et al (2022) Bioactive potential of brown algae. Adsorpt Sci Technol 2022

  • Rubiño S, Peteiro C, Aymerich T, Hortós M (2022) Brown macroalgae (Phaeophyceae): a valuable reservoir of antimicrobial compounds on northern coast of Spain. Mar Drugs 20:775

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakayama H, Nozaki H, Kasaki H, Hara Y (2002) Taxonomic re-examination of Nitella (Charales, Charophyceae) from Japan, based on microscopical studies of oospore wall ornamentation and rbc L gene sequences. Phycologia 41:397–408

    Article  Google Scholar 

  • Salama HMH, Marraiki N (2010) Antimicrobial activity and phytochemical analyses of Polygonum aviculare L.(Polygonaceae), naturally growing in Egypt. Saudi J Biol Sci 17:57–63

    Article  CAS  PubMed  Google Scholar 

  • Salvador N, Garreta AG, Lavelli L, Ribera MA (2007) Antimicrobial activity of Iberian macroalgae. Sci Mar 71:101–114

    Article  Google Scholar 

  • Sani A, Hassan D, Khalil AT et al (2021) Floral extracts-mediated green synthesis of NiO nanoparticles and their diverse pharmacological evaluations. J Biomol Struct Dyn 39:4133–4147

    Article  CAS  PubMed  Google Scholar 

  • Santos SAO, Vilela C, Freire CSR et al (2015) Chlorophyta and Rhodophyta macroalgae: a source of health promoting phytochemicals. Food Chem 183:122–128

    Article  CAS  PubMed  Google Scholar 

  • Seal T, Halder N, Chaudhuri K, Sinha SN (2015) Evaluation of antioxidant activities of algae and effect of solvent extraction system. Int J Pharm Sci Res 6:1273

    Google Scholar 

  • Shah SM, Ayaz M, Khan A et al (2015) 1, 1-Diphenyl, 2-picrylhydrazyl free radical scavenging, bactericidal, fungicidal and leishmanicidal properties of Teucrium stocksianum. Toxicol Ind Health 31:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Shah SAA, Hassan SSU, Bungau S et al (2020) Chemically diverse and biologically active secondary metabolites from marine phylum chlorophyta. Mar Drugs 18:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalaby E (2011) Algae as promising organisms for environment and health. Plant Signal Behav 6:1338–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma RP (2010) Antimicrobial resistance and its global spread. Indian J Community Heal 22:1–3

    Google Scholar 

  • Sharma B, Acharya A, Kumar S et al (2022) Phytochemical profiling of microalgae Euglena tuba and its anticancer activity in Dalton’s lymphoma cells. Front Biosci 27:120

    Article  Google Scholar 

  • Shobier AH, Ghani SAA, Barakat KM (2016) GC/MS spectroscopic approach and antifungal potential of bioactive extracts produced by marine macroalgae. Egypt J Aquat Res 42:289–299

    Article  Google Scholar 

  • Shrivastava SR, Shrivastava PS, Ramasamy J (2013) Role of self-care in management of diabetes mellitus. J Diabetes Metab Disord 12:1–5

    Article  Google Scholar 

  • Sibanda T, Okoh AI (2007) The challenges of overcoming antibiotic resistance: plant extracts as potential sources of antimicrobial and resistance modifying agents. Afr J Biotechnol 6

  • Silici S, Kutluca S (2005) Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J Ethnopharmacol 99:69–73

    Article  CAS  PubMed  Google Scholar 

  • Sukatar A, Karabay-Yavaşsoglu NU, Ozdemir G, Horzum Z (2006) Antimicrobial activity of volatile component and various extracts of Enteromorpha linza (Linnaeus) J. Agardh from the coast of Izmir, Turkey. Ann Microbiol 56:275–279

    Article  CAS  Google Scholar 

  • Sumayya SS, Murugan K (2018) Fractionationation of purified terpenoids from red algae Hypnea musciformis (Wulfen) JV Lamouroux. And Kappaphycus alvarezii (Doty) Doty ex PC Silva. By gc: Ms analysis. J Pharmacogn Phytochem 7:636–640

    CAS  Google Scholar 

  • Sun Z, Li T, Zhou Z, Jiang Y (2015) Microalgae as a source of lutein: chemistry, biosynthesis, and carotenogenesis. Microalgae Biotechnol 37–58

  • Torres FAE, Passalacqua TG, Velásquez A et al (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras Farmacogn 24:265–276

    Article  CAS  Google Scholar 

  • Torres P, Santos JP, Chow F, dos Santos DYAC (2019) A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Res 37:288–306

    Article  Google Scholar 

  • Unnikrishnan PS, Jayasri MA (2018) Marine algae as a prospective source for antidiabetic compounds–a brief review. Curr Diabetes Rev 14:237–245

    Article  CAS  PubMed  Google Scholar 

  • Vimala T, Poonghuzhali TV (2017) In vitro antimicrobial activity of solvent extracts of marine brown alga, Hydroclathrus clathratus (C. Agardh) M. Howe from Gulf of Mannar. J Appl Pharm Sci 7:157–162

    CAS  Google Scholar 

  • Wagh P, Rai M, Deshmukh SK, Durate MCT (2007) Bio-activity of oils of Trigonella foenum-graecum and Pongamia pinnata. Afr J Biotechnol 6

  • Wang M, Zhou J, Tavares J et al (2022) Applications of algae to obtain healthier meat products: a critical review on nutrients, acceptability and quality. Crit Rev Food Sci Nutr 1–18

  • Xie X, Chen C, Fu X (2021) Screening α-glucosidase inhibitors from four edible brown seaweed extracts by ultra-filtration and molecular docking. LWT 138:110654

    Article  CAS  Google Scholar 

  • Zakaria NA, Ibrahim D, Sulaiman SF, Supardy A (2011) Assessment of antioxidant activity, total phenolic content and in-vitro toxicity of malaysian red seaweed, Acanthophora spicifera. J Chem Pharm Res 3:182–191

    CAS  Google Scholar 

  • Zeng Z, Huang S-Y, Sun T (2020) Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes. Diabetes Ther 11:2521–2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Zohra T, Ovais M, Khalil AT et al (2019) Extraction optimization, total phenolic, flavonoid contents, HPLC-DAD analysis and diverse pharmacological evaluations of Dysphania ambrosioides (L.) Mosyakin & Clemants. Nat Prod Res 33:136–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R31), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. We would like to extend our sincere appreciation to the Pakistani Ministry of Science and Technology for providing us with access to and the opportunity to use the equipment located at the Pakistan Council of Scientific and Industrial Research (PCSIR) Peshawar. Furthermore, we would like to express our gratitude to the Department of Botany at Islamia College in Peshawar for their essential assistance throughout our research.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number (R.G.P. 2/223/44).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Data curation, writing – original draft, Formal analysis, Investigation, Methodology; Syed Lal Badshah, Imtiaz Ahmad: Formal analysis, Validation, Visualization, Resources, Writing – review & editing; Baber Ali: Data Curation, Formal analysis, Software, Visualization, Writing – original draft, Writing – review & editing; Ashwag Shami, Fatema Suliman Alatawi, Mohsen Suliman Alatawi, Yasser S. Mostafa, Saad A. Alamri, Ahlam A. Alalwiat, Majed A. Bajaber : Software, Writing – review & editing, Formal analysis, Data Curation, Validation. All authors contributed significantly, have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Arshad Iqbal.

Ethics declarations

Ethics approval and consent to participate

To ensure the ethical treatment of animals, the procedures recommended by the Animal Ethical Committee of the University of Malakand’s Department of Pharmacy (Ref: DREC/ Pharm –DM / DD2 -2020) were followed. All the experiments were performed in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Iqbal, A., Badshah, S.L. et al. Exploring the hidden treasures of Nitella hyalina: a comprehensive study on its biological compounds, nutritional profile, and unveiling its antimicrobial, antioxidative, and hypoglycemic properties. World J Microbiol Biotechnol 39, 345 (2023). https://doi.org/10.1007/s11274-023-03795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03795-x

Keywords

Navigation