Skip to main content

Advertisement

Log in

Bringing resistance modulation to methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains using a quaternary ammonium compound coupled with zinc oxide nanoparticles

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nowadays, there are concerns about the inadequacy of new antimicrobials and the rise of antimicrobial resistance. Hence, novel antibacterial agents need to be discovered. In this respect, the use of nanoparticles (NPs) seems promising. Zinc oxide nanoparticles (ZnONPs) are functional and inexpensive NPs that possess antimicrobial characteristics, stability, microbial selectivity, and an easy manufacturing procedure. Imidazolium is one of the quaternary ammonium compounds (QACs) frequently employed as antimicrobial materials in industrial and clinical fields. The present study successfully employed imidazolium to couple with ZnONPs to improve their antimicrobial properties. The antimicrobial activities of ZnONPs doped with imidazolium (IM@ZnONPs) compared to ZnONPs and zinc (Zn) ions against some pathogen microorganism species including Streptococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis), methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Candida albicans (C. albicans) were evaluated by the microdilution method. The minimum inhibitory concentration (MIC) results revealed that the antimicrobial activities of Zn ions, ZnONPs, and IM@ZnONPs were concentration-dependent. Moreover, we found that the nanoparticulate forms of Zn had considerably stronger antibacterial activities, particularly against VRE and MRSA, compared to Zn ions which failed to restrain the microbial strains at the tested microdilutions of this experiment (MIC: ≥512 µg/mL). Interestingly, the incorporation of imidazolium into ZnONPs resulted in significant inhibition of microbial growth in antimicrobial-resistant pathogens at low concentrations (MIC: 32 µg/mL) and effectively improved the monodispersity of the final coated NPs in terms of size and morphology. To sum up, IM@ZnONPs can be a favorable substitute for conventional antimicrobial agents to combat antimicrobial resistance in many fields, including pharmaceuticals, dental materials, and cosmetic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbaszadegan A, Nabavizadeh M, Gholami A et al (2015) Positively charged imidazolium-based ionic liquid‐protected silver nanoparticles: a promising disinfectant in root canal treatment. Int Endod J 48(8):790–800

    Article  CAS  PubMed  Google Scholar 

  • Abbaszadegan A, Gholami A, Abbaszadegan S et al (2017) The effects of different ionic liquid coatings and the length of alkyl chain on antimicrobial and cytotoxic properties of silver nanoparticles. Iran Endod J 12(4):481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abootalebi SN, Mousavi SM, Hashemi SA, Shorafa E, Omidifar N, Gholami A (2021) Antibacterial effects of green-synthesized silver nanoparticles using Ferula asafoetida against Acinetobacter baumannii isolated from the hospital environment and assessment of their cytotoxicity on the human cell lines. J Nanomater 2021, 1–12

  • Aditya A, Chattopadhyay S, Jha D, Gautam HK, Maiti S, Ganguli M (2018) Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria. ACS Appl Mater Interfaces 10(18):15401–15411

    Article  CAS  PubMed  Google Scholar 

  • Agarwal H, Menon S, Kumar SV, Rajeshkumar S (2018) Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 286:60–70

    Article  CAS  Google Scholar 

  • Akbar A, Sadiq MB, Ali I et al (2019) Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatal Agric Biotechnol 17:36–42

    Article  Google Scholar 

  • AlKahtani RN (2018) The implications and applications of nanotechnology in dentistry: a review. The Saudi Dent J 30(2):107–116

    Article  PubMed  Google Scholar 

  • Battah B (2021) Emerging of bacterial resistance: an ongoing threat during and after the syrian crisis. J Infect Dev Ctries 15(02):179–184

    Article  CAS  PubMed  Google Scholar 

  • Bhushan M, Kumar Y, Periyasamy L, Viswanath AK (2018) Facile synthesis of Fe/Zn oxide nanocomposites and study of their structural, magnetic, thermal, antibacterial and cytotoxic properties. Mater Chem Phys 209:233–248

    Article  CAS  Google Scholar 

  • Bienek DR, Giuseppetti AA, Frukhtbeyn SA et al (2019) Physicochemical, mechanical, and antimicrobial properties of novel dental polymers containing quaternary ammonium and trimethoxysilyl functionalities. J Funct Biomater 11(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Cano A, Ettcheto M, Espina M et al (2020) State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections. J Nanobiotechnol 18(1):156

    Article  Google Scholar 

  • da Silva BL, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA (2019) Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification. Colloids Surf B Biointerfaces 177:440–447

    Article  Google Scholar 

  • Duval RE, Grare M, Demoré B (2019) Fight against antimicrobial resistance: we always need new antibacterials but for right bacteria. Molecules 24(17):3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi N, Rasoul-Amini S, Ebrahiminezhad A, Ghasemi Y, Gholami A, Seradj H (2016) Comparative study on characteristics and cytotoxicity of bifunctional magnetic-silver nanostructures: synthesized using three different reducing agents. Acta Metall Sin (Engl Lett) 29:326–334

    Article  CAS  Google Scholar 

  • Fontecha-Umaña F, Ríos-Castillo AG, Ripolles-Avila C, Rodríguez-Jerez JJ (2020) Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods 9(4):442

    Article  PubMed  PubMed Central  Google Scholar 

  • Gharpure S, Ankamwar B (2020) Synthesis and antimicrobial properties of zinc oxide nanoparticles. J Nanosci Nanotechnol 20(10):5977–5996

    Article  CAS  PubMed  Google Scholar 

  • Gholami A, Rasoul-Amini S, Ebrahiminezhad A et al (2016) Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnol 28(4):177–186

    Google Scholar 

  • Gholami A, Mohammadi F, Ghasemi Y, Omidifar N, Ebrahiminezhad A (2020) Antibacterial activity of SPIONs versus ferrous and ferric ions under aerobic and anaerobic conditions: a preliminary mechanism study. IET Nanobiotechnol 14(2):155–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Gholami A, Shams MS, Abbaszadegan A, Nabavizadeh M (2021a) Ionic liquids as capping agents of silver nanoparticles. Part II: Antimicrobial and cytotoxic study. Green Process Synthesis 10(1):585–593

    Article  CAS  Google Scholar 

  • Gholami A, Shams MS, Abbaszadegan A, Nabavizadeh MJGP, Synthesis (2021b) Ionic liquids as capping agents of silver nanoparticles. Part II: Antimicrobial and cytotoxic study. 10(1):585–593

  • Gholami A, Ghezelbash K, Asheghi B, Abbaszadegan A, Amini A (2022a) An < i > In Vitro Study on the Antibacterial Effects of Chlorhexidine-Loaded Positively Charged Silver Nanoparticles on < i > Enterococcus faecalis. J Nanomater 2022a, 6405772

  • Gholami A, Ghezelbash K, Asheghi B, Abbaszadegan A, Amini A (2022b) An in vitro study on the antibacterial effects of chlorhexidine-loaded positively charged silver nanoparticles on Enterococcus faecalis. J Nanomater 2022b

  • Gholami A, Mousavi SM, Shomali A et al (2022c) One-put Ferula-mediated synthesis of Biogenic Silver Nanoparticles with more Antimicrobial Effect and Promising Human Cell Biocompatibility.J Nanomat

  • Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB (2021) A Mini Review of Antibacterial Properties of ZnO Nanoparticles.Front Phys9

  • Hayat S, Ashraf A, Zubair M et al (2022) Biofabrication of ZnO nanoparticles using Acacia arabica leaf extract and their antibiofilm and antioxidant potential against foodborne pathogens.Plos one17(1), e0259190

  • Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16(2):91–104

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SS, Ghaemi E, Koohsar F (2018) Influence of ZnO nanoparticles on Candida albicans isolates biofilm formed on the urinary catheter. Iran J Microbiol 10(6):424

    PubMed  PubMed Central  Google Scholar 

  • Islam F, Shohag S, Uddin MJ et al (2022) Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials 15(6):2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javed R, Zia M, Naz S, Aisida SO, Ain Nu, Ao Q (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol 18(1):172

    Article  Google Scholar 

  • Jiang S, Lin K, Cai M (2020) ZnO nanomaterials: current advancements in antibacterial mechanisms and applications. Front Chem 8:580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jowkar Z, Fattah Z, Ghanbarian S, Shafiei F (2020) The effects of silver, zinc oxide, and titanium dioxide nanoparticles used as dentin pretreatments on the microshear bond strength of a conventional glass ionomer cement to dentin. Int J Nanomedicine 15:4755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemung HM, Tan LT-H, Khaw KY et al (2020) An optimized anti-adherence and anti-biofilm assay: case study of zinc oxide nanoparticles versus MRSA biofilm.Prog Microb Mol Biol3(1)

  • Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Viswanathan K, Kasi G, Sadeghi K, Thanakkasaranee S, Seo J (2020) Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens. Microb Pathog 149:104290

    Article  CAS  PubMed  Google Scholar 

  • Kishen A, Shi Z, Shrestha A, Neoh KG (2008) An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 34(12):1515–1520

    Article  PubMed  Google Scholar 

  • Lee S, Cheng H, Chi M et al (2016) Sensing and antibacterial activity of imidazolium-based conjugated polydiacetylenes. Biosens Bioelectron 77:1016–1019

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Karim A (2021) The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 44(3):281–297

    Article  PubMed  Google Scholar 

  • Lei Y, Zhou S, Dong C, Zhang A, Lin Y (2018) PDMS tri-block copolymers bearing quaternary ammonium salts for epidermal antimicrobial agents: synthesis, surface adsorption and non-skin-penetration. React Funct Polym 124:20–28

    Article  CAS  Google Scholar 

  • Lodhi FL, Saleem MI, Aqib AI et al (2021) Bringing resistance modulation to epidemic methicillin resistant S. aureus of dairy through antibiotics coupled metallic oxide nanoparticles. Microb Pathog 159:105138

    Article  CAS  PubMed  Google Scholar 

  • McGuffie MJ, Hong J, Bahng JH et al (2016) Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth. Nanomed: Nanotechnol Biol Med 12(1):33–42

    Article  CAS  Google Scholar 

  • Melese A, Genet C, Andualem T (2020) Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 20(1):1–12

    Article  Google Scholar 

  • Miskiewicz A, Ceranowicz P, Szymczak M, Bartuś K, Kowalczyk P (2018) The use of liquids ionic fluids as pharmaceutically active substances helpful in combating nosocomial infections induced by Klebsiella Pneumoniae new delhi strain, Acinetobacter Baumannii and Enterococcus species. Int J Mol Sci 19(9):2779

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi F, Abbaszadegan A, Gholami A (2020) Recent advances in nanodentistry: a special focus on endodontics. Micro & Nano Lett 15(12):812–816

    Article  CAS  Google Scholar 

  • Mohammadi F, Gholami A, Omidifar N, Amini A, Kianpour S, Taghizadeh S-M (2022) The potential of surface nano-engineering in characteristics of cobalt-based nanoparticles and biointerface interaction with prokaryotic and human cells. Colloids Surf B Biointerfaces 215:112485

    Article  CAS  PubMed  Google Scholar 

  • Mohkam M, Rasoul-Amini S, Shokri D et al (2016) Characterization and in vitro probiotic assessment of potential indigenous Bacillus strains isolated from soil rhizosphere. Minerva Biotecnol 28(1):19–28

    Google Scholar 

  • Motshekga SC, Ray SS, Onyango MS, Momba MN (2015) Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl Clay Sci 114:330–339

    Article  CAS  Google Scholar 

  • Nabavizadeh M, Abbaszadegan A, Gholami A et al (2017) Antibiofilm efficacy of positively charged imidazolium-based silver nanoparticles in Enterococcus faecalis using quantitative real-time PCR.Jundishapur J Microbiol10(10)

  • Nabavizadeh M, Ghahramani Y, Abbaszadegan A, Jamshidzadeh A, Jenabi P, Makarempour A (2018) In vivo biocompatibility of an ionic liquid-protected silver nanoparticle solution as root canal irrigant. Iran Endod J 13(3):293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair N, James B, Devadathan A, Johny MK, Mathew J, Jacob J (2018) Comparative evaluation of antibiofilm efficacy of chitosan nanoparticle-and zinc oxide nanoparticle-incorporated calcium hydroxide-based sealer: an in vitro study. Contem Clin Dent 9(3):434

    Article  CAS  Google Scholar 

  • Nikfarjam N, Ghomi M, Agarwal T et al (2021) Antimicrobial Ionic Liquid-Based materials for Biomedical Applications. Adv Funct Mater 31(42):2104148

    Article  CAS  Google Scholar 

  • Okoliegbe IN, Hijazi K, Cooper K, Ironside C, Gould IM (2021) Trends of Antimicrobial Resistance and Combination susceptibility testing of Multidrug-Resistant Pseudomonas aeruginosa isolates from cystic fibrosis patients: a 10-Year update. Antimicrob Agents Chemother 65(6):e02483–e02420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozak ST, Ozkan P (2013) Nanotechnology and dentistry. Eur J Dent 7(01):145–151

    PubMed  PubMed Central  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815

    Article  CAS  PubMed  Google Scholar 

  • Punjabi K, Mehta S, Chavan R, Chitalia V, Deogharkar D, Deshpande S (2018) Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front Microbiol 9:2207

    Article  PubMed  PubMed Central  Google Scholar 

  • Rad SS, Sani AM, Mohseni S (2019) Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L). Microb Pathog 131:239–245

    Article  CAS  PubMed  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    Article  CAS  PubMed  Google Scholar 

  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl phys lett 90(21):213902

    Article  Google Scholar 

  • Sahebi S, Asheghi B, Samadi Y, Eskandari F (2022) Effect of Calcium Hydroxide and Nano Calcium Hydroxide on push-out bond strength of Epoxy Resin Sealer to Root Canal dentin. Iran Endod J 17(1):13–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampath S, Bhushan M, Saxena V, Pandey LM, Singh LR (2022) Green synthesis of Ag doped ZnO nanoparticles: study of their structural, optical, thermal and antibacterial properties. Mater Technol 37(13):2785–2794

    Article  CAS  Google Scholar 

  • Sharma RK, Ghose R (2015) Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram Int 41(1):967–975

    Article  CAS  Google Scholar 

  • Shoeb M, Singh BR, Khan JA et al (2013) ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Adv Nat Sci: Nanosci Nanotechnol 4(3):035015

    CAS  Google Scholar 

  • Shtyrlin NV, Sapozhnikov SV, Galiullina AS et al (2016) Synthesis and antibacterial activity of quaternary ammonium 4-deoxypyridoxine derivatives. Biomed Res Int 2016

  • Siddique S, Hussain Z, Shahid S, Yasmin F (2013) Preparation, characterization and antibacterial activity of ZnO nanoparticles on broad spectrum of microorganisms.Acta Chim Slov

  • Singha P, Workman CD, Pant J, Hopkins SP, Handa H (2019) Zinc-oxide nanoparticles act catalytically and synergistically with nitric oxide donors to enhance antimicrobial efficacy. J Biomed Mater Res A 107(7):1425–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro lett 7:219–242

    Article  CAS  Google Scholar 

  • Spirescu VA, Chircov C, Grumezescu AM, Andronescu E (2021) Polymeric nanoparticles for antimicrobial therapies: an up-to-date overview. Polymers 13(5):724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tischer M, Pradel G, Ohlsen K, Holzgrabe U (2012) Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions? ChemMedChem 7(1), 22–31

  • Umar H, Kavaz D, Rizaner N (2019) Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomed 14:87

    Article  CAS  Google Scholar 

  • Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP (2021) Quaternary ammonium compounds (QACs) and ionic liquids (ILs) as biocides: from simple antiseptics to tunable antimicrobials. Int J Mol Sci 22(13):6793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila J, Moreno-Morales J, Ballesté-Delpierre C (2020) Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect 26(5):596–603

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  CAS  Google Scholar 

  • Wencewicz TA (2019) Crossroads of antibiotic resistance and biosynthesis. J Mol Biol 431(18):3370–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DD, Paterna NJ, Senetra AS et al (2021) Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy. Iscience 24(1):101853

    Article  CAS  PubMed  Google Scholar 

  • Zabihi E, Arab-Bafrani Z, Hoseini SM et al (2021) Fabrication of nano-decorated ZnO-fibrillar chitosan exhibiting a superior performance as a promising replacement for conventional ZnO. Carbohydr Polym 274:118639

    Article  CAS  PubMed  Google Scholar 

  • Zargarnezhad S, Gholami A, Khoshneviszadeh M, Abootalebi SN, Ghasemi Y (2020) Antimicrobial activity of isoniazid in conjugation with surface-modified magnetic nanoparticles against Mycobacterium tuberculosis and nonmycobacterial microorganisms. J Nanomater 2020

  • Zhong L, Liu H, Samal M, Yun K (2018) Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity. J Photochem Photobiol B: Biol 183:293–301

    Article  CAS  Google Scholar 

  • Zohra T, Numan M, Ikram A et al (2021) Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, nanotechnology and other strategies in ESKAPE pathogens. Microorganisms 9(5):954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Appreciations are expressed to Dr. Elham Riazimontazer for helping with the preparation of Fig. 7.

Funding

The authors declare that they received no funds, grants, or other support during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ahmad Gholami. The first draft of the manuscript was written by Fateme Eskandari and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmad Gholami.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, F., Mofidi, H., Asheghi, B. et al. Bringing resistance modulation to methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains using a quaternary ammonium compound coupled with zinc oxide nanoparticles. World J Microbiol Biotechnol 39, 193 (2023). https://doi.org/10.1007/s11274-023-03639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03639-8

Keywords

Navigation