Skip to main content
Log in

Insights into taxonomic diversity and bioprospecting potential of Cerrado endophytic fungi: a review exploring an unique Brazilian biome and methodological limitations

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cerrado is the second largest biome in Brazil, and it is known for harboring a wide variety of endemic plant and microbial species, among which are endophytic fungi. Endophytic fungi are microorganisms capable of colonizing the interior of plant tissues without causing disease in host plants. Especially in the Cerrado biome, this group of microorganisms is still poorly studied and information on species estimation, ecological and evolutionary importance is not accurate and remains unknown. Also, it is extremely important to emphasize that great part of studies available on Cerrado endophytic fungi are national literature, including master’s dissertations, course conclusion works or unpublished doctoral theses. The majority of these studies has highlighted that the endemic plant species are an important habitat for fungal endophytes, and new species have increasingly been described. Due to the lack of international literature on Cerrado endophytic fungi, the present review brings a bibliographic survey on taxonomic diversity and bioprospecting potential of fungal endophytes from a unique environment. This review also emphasizes the importance of studying Brazilian endophytic fungi from Cerrado as a source of new technologies (biofertilizer and biocontroller), since they are secondary metabolite-producing organisms with different biological activities for biotechnological, agricultural and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberto PS (2013) Diversidade de fungos endofíticos de Anacardium othonianum Rizzini e seu potencial biotecnológico. Dissertação (Mestrado em Ciências Agrárias-Agronomia). Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, Goiás, Brasil.

  • Araujo JF, de Castro AP, Costa MM, Togawa RC, Júnior GJ, Quirino BF, Bustamante MM, Williamson L, Handelsman J, Krüger RH (2012) Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance. Microb Ecol 64(3):760–770.

    Article  CAS  PubMed  Google Scholar 

  • Araújo MAM (2014) Isolamento e seleção de leveduras para produção de enzimas de interesse industrial a partir de frutos do Cerrado. Dissertação (Mestrado em Biotecnologia) Universidade Católica Dom Bosco, Mato Grosso do Sul, Brasil.

  • Arfi Y, Buée M, Marchand C, Levasseur A, Record E (2012) Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa. FEMS Microb Ecol 79:433–444

    Article  Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycology 95(3):388–398

    Article  Google Scholar 

  • Bacon CW, White J (2000) Microbial endophytes. CRC, New York, NY

    Book  Google Scholar 

  • Bilal S, Shahzad R, Imrana M, Jan R, Kim KM, Lee IJ (2020) Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind Crop Prod 143:111931

    Article  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  PubMed  Google Scholar 

  • Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Soil biology, vol 9. Springer, Berlin, Heidelberg, pp 281–298

    Google Scholar 

  • Camacho E, Niño-Vega GA (2017) Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm 5313691.

  • Carvalho et al (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57(2):95–107

    Article  Google Scholar 

  • Chagas MBO, Prazeres Dos Santos I, Nascimento da Silva LC, Correia MTDS, Magali de Araújo J, Cavalcanti MDS, Lima VLM (2017) Antimicrobial activity of cultivable endophytic fungi associated with Hancornia Speciosa Gomes Bark. Microbiol J 21(11):179–188

    Google Scholar 

  • Chanclud E, Morel JB (2016) Plant hormones: A fungal point of view. Mol Plant Pathol 17:1289–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K et al (2016) Endophytic fungi with antitumor activities: their occurrence and anticancer compounds. Crit Rev Microbiol 42:454–473

    CAS  PubMed  Google Scholar 

  • Cheng JT, Cao F, Chen XA et al (2020) Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. BMC Genom 21:424

    Article  CAS  Google Scholar 

  • Chetia H et al (2019) Exploring the benefits of endophytic fungi via omics. In: Singh B (ed) Advances in endophytic fungal research: fungal biology. Springer, Cham

    Google Scholar 

  • Chi WC, Chen W, He CC et al (2019) A highly diverse fungal community associated with leaves of the mangrove plant Acanthus ilicifolius var xiamenensis revealed by isolation and metabarcoding analyses. Peer J 7:e7293

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow YY, Ting ASY (2019) Influence of fungal infection on plant tissues: FTIR detects compositional changes to plant cell walls. Fungal Ecol 37:38–47

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1745

    Article  CAS  PubMed  Google Scholar 

  • Coelho LGF et al (2020) Yeast ommunities structure in fruits of native plant species of Brazilian Cerrado. Rev Bio Neotrop 17:35–46

    Article  Google Scholar 

  • Costa I, Maia LC, Cavalcanti MA (2012) Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil. Braz J Microb 43:1165–1173

    Article  Google Scholar 

  • da Silva CF, Vitorino LC, Soares MA, Souchie EL (2018) Multifunctional potential of endophytic and rhizospheric microbial isolates associated with Butia purpurascens roots for promoting plant growth. Anton Van Leeuw 111(11):2157–2174

    Article  CAS  Google Scholar 

  • Dastogeer KMG (2018) Influence of fungal endophytes on plant physiology is more pronounced under stress than well-watered conditions: a meta-analysis. Planta 248(6):1403–1416

    Article  CAS  PubMed  Google Scholar 

  • David AS, Seabloom EW, May G (2016) Plant Host species and geographic distance affect the structure of aboveground fungal symbiont communities, and environmental filtering affects belowground communities in a coastal dune ecosystem. Microb Ecol 71(4):912–926

    Article  PubMed  Google Scholar 

  • de Araujo AS, Bezerra WM, Dos Santos VM et al (2017) Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado. Anton Van Leeuw 110(4):457–469

    Article  Google Scholar 

  • de Medeiros AG, Savi DC, Mitra P, Shaaban KA, Jha AK, Thorson JS, Rohr J, Glienke C (2018) Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiol (praha) 63(4):499–505

    Article  CAS  Google Scholar 

  • Detmann KSC et al (2008) Comparação de métodos para a observação de fungos micorrízicos arbusculares e endofíticos do tipo dark septate em espécies nativas de Cerrado. R Bras Ci Solo 32(5):1883–1890

    Article  Google Scholar 

  • Du W, Yao Z, Li J et al (2020) Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PLoS ONE 15(3):e0229589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM (2021) Marine endophytic fungal metabolites: a whole new world of pharmaceutical therapy exploration. Heliyon 7(3):e06362

    Article  PubMed  PubMed Central  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42(2):360–368

    Article  PubMed  Google Scholar 

  • Farias GC, Nunes KG, Soares MA et al (2020) Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Braz J Microbiol 51(1):243–253

    Article  CAS  PubMed  Google Scholar 

  • Fernandes GW, Oki Y, Belmiro MS et al (2018) Multitrophic interactions among fungal endophytes, bees, and Baccharis dracunculifolia: resin tapering for propolis production leads to endophyte infection. Arthropod Plant Interact 12:329–337

    Article  Google Scholar 

  • Ferreira MC et al (2017) Diversity of the endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from the endangered Brazilian rupestrian grasslands. Biochem Syst Ecol 71:163–169

    Article  CAS  Google Scholar 

  • Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP (2016) The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol 7:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontana DC, de Paula S, Torres AG, de Souza VHM, Pascholati SF, Schmidt D, Dourado Neto D (2021) Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10(5):570

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamboa MA, Laureano S, e Bayman P, (2002) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45

    Article  PubMed  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pages V et al (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:179–189

    Article  PubMed  Google Scholar 

  • Gough C, Cullimore J (2011) Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Mol Plant Microbe Interact 24:867–878

    Article  CAS  PubMed  Google Scholar 

  • Guimarães DO, Borges WS, Vieira NJ et al (2010) Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry 71(11–12):1423–1429

    Article  PubMed  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL, Lücking R (2018) Fungal diversity revisited: 2.2 to 3.8 million species. In: Heitman J, Howlett BJ, Crous PW, Stukenbrock EH, James TY, Gow NAR (eds) The fungal kingdom. ASM Press, Washington, DC, pp 79–95

    Google Scholar 

  • Ikram M, Ali N, Jan G, Jan FG, Khan N (2020) Endophytic fungal diversity and their interaction with plants for agriculture sustainability under stressful condition. Recent Pat Food Nutr Agric 11(2):115–123

    Article  PubMed  Google Scholar 

  • Januário LC, Vitorino AH (2013) Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro microplants. Quimica Nova 36(7):1014–1020

    Article  Google Scholar 

  • Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A Friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 9(7):906

    Google Scholar 

  • Joly CA, Rodrigues RR, Metzger JP, Haddad CF, Verdade LM, Oliveira MC, Bolzani VS (2010) Ecology. Biodiversity conservation research, training, and policy in São Paulo. Science 328(5984): 1358–9.

  • Kaul S, Sharma T, Dhar M (2016) “Omics” tools for better understanding the plant-endophyte interactions. Front Plant Sci 7:955

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirk P, Cannon P, Minter D, Stalpers J (2008) Ainsworth and Bisby’s dictionary of the Fungi, 10ª. CAB International, Wallingford, Reino Unido

    Book  Google Scholar 

  • Klink CA, Machado RB (2005) The conservation of the Brazilian Cerrado. Megadiversidades 1:147–155

    Google Scholar 

  • Koch RA, Wilson AW, Séné O, Henkel TW, Aime MC (2017) Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative. Guyanagaster BMC Evol Biol 17(1):33

    Article  PubMed  CAS  Google Scholar 

  • Latz MAC, Jensen B, Collinge DB, Jørgensen HJL (2018) Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol Divers 11:555–567

    Article  Google Scholar 

  • Leaker J (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

  • Li JL, Sun X, Chen L, Guo LD (2016) Endophytic fungal community structure of four mangrove species in southern China. Mycology 7(4):180–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Zhou J, Xu RS, Meng M, Yu X, Dai CC (2018) Auxin, cytokinin, and ethylene involved in rice N availability improvement caused by endophyte Phomopsis liquidambari. J Plant Growth Regul 37:128–143

    Article  CAS  Google Scholar 

  • Lisboa HC, Biasetto CR, de Medeiros JB, Âraújo AR, Silva DH, Teles HL, Trevisan HC (2013) Endophytic fungi producing of esterases: evaluation in vitro of the enzymatic activity using pH indicator. Braz J Microbiol 44(3):923–926

    Article  CAS  PubMed  Google Scholar 

  • Lubna AS, Hamayuna M, Khan AL, Waqas M, Khan MA, Jan R et al (2018) Salt tolerance of Glycine max L. induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23

    Article  CAS  PubMed  Google Scholar 

  • Lücking R, Aime MC, Robbertse B et al (2020) Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 11:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010) Myconet volume 14. Part one. Outline of ascomycota—2009. Part two. Notes on ascomycete systematics. Nos. 4751–5113. Fieldiana Life and Earth Sciences 1–64.

  • Maharachchikumbura SS, Hyde KD, Jones EG, McKenzie EHC, Bhat JD, Dayarathne MC et al (2016) Families of Sordariomycetes. Fungal Divers 79:1–317

    Article  Google Scholar 

  • Marcuzzo FFN, Cardoso MRD, Faria TG (2012) Chuvas no cerrado da região Centro-Oeste do Brasil: análise histórica e tendência futura. Ateliê Geográfico 6(2):112–130

    Google Scholar 

  • Mendonça R, Felfili J, Walter B, Silva JJC, et al (1998) Flora vascular do Cerrado. In S. Sano and S. Almeida (eds.), Cerrado. Ambiente e flora. pp. 288–556. Empresa Brasileira de Pesquisa Agropecuária—Embrapa—Cerrados, Planaltina, Brasil.

  • Mishra A, Gond SK, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN (2012) Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb Ecol 64(2):388–398

    Article  PubMed  Google Scholar 

  • Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 94(4):1443–1476

    Article  PubMed  PubMed Central  Google Scholar 

  • Noriler SA, Savi DC, Aluizio R, Palácio-Cortes AM, Possiede YM, Glienke C (2018) Bioprospecting and structure of fungal endophyte communities found in the Brazilian Biomes, Pantanal, and Cerrado. Front Microbiol 9:1526

    Article  PubMed  PubMed Central  Google Scholar 

  • Noriler SA, Savi DC, Ponomareva LV, Rodrigues R, Rohr J, Thorson JS, Glienke C, Shaaban KA (2019) Vochysiamides A and B: Two new bioactive carboxamides produced by the new species Diaporthe vochysiae. Fitoterapia 138:104273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira CM, Regasini LO, Silva GH, Pfenning LH et al (2010) Dihydroisocoumarins produced by Xylaria sp. and Penicillium sp., endophytic fungi associated with Piper aduncum and Alibertia macrophylla. Phytochem Lett 4(2):93–96

    Article  CAS  Google Scholar 

  • Oliveira DM, Pereira CB, Mendes G et al (2018) Two new usnic acid derivatives from the endophytic fungus Mycosphaerella sp. Z Naturforsch CJ Biosc 73(11–12):449–455

    Article  CAS  Google Scholar 

  • Pagotto TCS et al (2006) Bioma cerrado e área estudada. In: PAGOTTO, TCS, SOUZA, PR. Biodiversidade do complexo Aporé-Sucuriú: subsídios à conservação e ao manejo do cerrado: área prioritária 316-Jauru. Campo Grande: UFMS, 2006. p. 18–30.

  • Pedrero-Méndez A, Insuasti HC, Neagu T, Illescas M, Rubio MB, Monte E, Hermosa R (2021) Why is the correct selection of Trichoderma strains important? The case of wheat endophytic strains of T. harzianum and T. simmonsii. J Fungi (Basel) 7(12):1087

    Article  CAS  Google Scholar 

  • Pudasaini S, Wilson J, Ji M et al (2017) Microbial diversity of Browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods. Front Microbiol 8:591

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampelotto PH, de Siqueira FA, Barboza AD, Roesch LF (2013) Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems. Microb Ecol 66(3):593–607

    Article  PubMed  Google Scholar 

  • Réblová M, Miller AN, Rossman AY, Seifert KA, Crous PW, Hawksworth DL et al (2016) Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 7(1):131–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards TA, Leonard G, Wideman JG (2017) What defines the “Kingdom” Fungi? Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0044-2017

    Article  PubMed  Google Scholar 

  • Rodrigues VEG, Carvalho DA (2001) Levantamento etnobotânico de plantas medicinais no domíniodo cerrado na região do Alto Rio Grande –Minas Gerais. Ciênc Agrotec 1:102–123

    Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RL (2010) Fungos endofiticos associados à Vellozia compacta Mart. ex Schult. F. (Velloziaceae) presente em afloramentos rochosos nos estados de Minas Gerais e Tocantins. Dissertação (Mestrado em Ecologia de Biomas Tropicais) Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil.

  • Rozpądek P, Wężowicz K, Nosek M, Ważny R, Tokarz K, Lembicz M, Miszalski Z, Turnau K (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Plant 242(4):1025–1035

    Article  CAS  Google Scholar 

  • Rutter BD, Innes RW (2018) Extracellular vesicles as key mediators of plant-microbe interactions. Curr Opin Plant Biol 44:16–22

    Article  CAS  PubMed  Google Scholar 

  • Sagita R, Quax WJ, Haslinger K (2021) Current state and future directions of genetics and genomics of endophytic fungi for bioprospecting efforts. Front Bioeng Biotechnol 9:649906

    Article  PubMed  PubMed Central  Google Scholar 

  • Saijo Y, Loo EP, Yasuda S (2018) Pattern recognition receptors and signaling in plant-microbe interactions. Plant J 93(4):592–613

    Article  CAS  PubMed  Google Scholar 

  • Saldierna Guzmán JP, Nguyen K, Hart SC (2020) Simple methods to remove microbes from leaf surfaces. J Basic Microbiol 60(8):730–734

    Article  PubMed  CAS  Google Scholar 

  • Sandberg DC, Battista LJ, Arnold AE (2014) Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure. Microb Ecol 67(4):735–747

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos M, Cesanelli I, Diánez F, Sánchez-Montesinos B, Moreno-Gavíra A (2021) Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses. J Fungi (basel) 7(11):939

    Article  CAS  Google Scholar 

  • Santos BTA (2014) Estudo da atividade dos extratos de plantas e fungos endofíticos isolados do cerrado brasileiro em linhagem celular de feocromocitoma. 73 f., il. Dissertação (Mestrado em Ciências Farmacêuticas) Universidade de Brasília, Brasil.

  • Sarkar S, Dey A, Kumar V, Batiha GE, El-Esawi MA, Tomczyk M, Ray P (2021) Fungal endophyte: an interactive endosymbiont with the capability of modulating host physiology in myriad ways. Front Plant Sci 12:701800

    Article  PubMed  PubMed Central  Google Scholar 

  • Saucedo-García A, Anaya AL, Espinosa-García FJ, González MC (2014) Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico. Plos One 9(6):e98454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savi DC, Noriler SA, Ponomareva LV et al (2020) Dihydroisocoumarins produced by Diaporthe cf. heveae LGMF1631 inhibiting citrus pathogens. Foliar Microbiol 65:381–392

    Article  CAS  Google Scholar 

  • Shahabivand S, Parvaneh A, Aliloo AA (2017) Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol Environ Saf 145:496–502

    Article  CAS  PubMed  Google Scholar 

  • Silva JMC, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical Savanna hotspot. Bioscience 52:225–233

    Article  Google Scholar 

  • Silva GH et al (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67(17):1964–1969

    Article  CAS  PubMed  Google Scholar 

  • Souza RC, Mendes IC, Reis-Junior FB et al (2016) Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado? BMC Microbiol 16:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spatafora JW, Owensby CA, Douhan GW, Boehm EW, Schoch CL (2012) Phylogenetic placement of the ectomycorrhizal genus Cenococcum in Gloniaceae (Dothideomycetes). Mycology 104(3):758–765

    Article  Google Scholar 

  • Sun X, Guo L-D (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3(1):65–76

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Res 18(4):448–459

    CAS  Google Scholar 

  • Tang D, Wang G, Zhou JM (2017) Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29(4):618–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Wang Y, Yang J et al (2020) Isolation and identification of flavonoid-producing endophytic fungi from medicinal plant Conyza blinii H. Lév that exhibit higher antioxidant and antibacterial activities. Peer J 8:e8978

    Article  PubMed  PubMed Central  Google Scholar 

  • Teles HL et al (2005) Benzopyrans from Curvularia sp, na endophytic fungus associated with Ocotea corymbosa (Lauraceae). Phytochemistry 66(19):2363–2367

    Article  CAS  PubMed  Google Scholar 

  • Teles HL et al (2006) Aromatic compounds produced by Periconia atropurpurea, an endophytic fungus associated with Xylopia aromatica. Phytochemistry 67(24):2686–2690

    Article  CAS  PubMed  Google Scholar 

  • Tian W, Hou CC, Ren ZJ, Wang C, Zhao FG, Dahlbeck D, Hu SP et al (2019) A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572:131

    Article  CAS  PubMed  Google Scholar 

  • Toghueo RMK, Boyom FF (2020) Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. Biotech 10(3):107

    Google Scholar 

  • Tonial F et al (2017) Biological activity of extracts of Diaporthe terebinthifolii against Phyllosticta citricarpa. FEMS Microbiol Lett 364(5):fnx026

    Article  CAS  Google Scholar 

  • Torres FL (2018) Isolamento, caracterização e potencial biotecnológico de fungos endofíticos associados à plantas do Cerrado. Dissertação (Mestrado em Biotecnologia) da Universidade Federal de São Carlos, São Carlos, São Paulo, Brasil.

  • Uzma F, Mohan CD, Hashem A et al (2018) Endophytic fungi-alternative sources of cytotoxic compounds: a review. Front Pharmacol 26(9):309

    Article  CAS  Google Scholar 

  • Vale HMM et al (2021) Yeasts in native fruits of the Cerrado: occurrence, diversity and enzymatic potential. Biota Neotrop. https://doi.org/10.1590/1676-0611-bn-2020-1184

    Article  Google Scholar 

  • Vasundhara M, Kumar A, Reddy MS (2016) Molecular approaches to screen bioactive compounds from endophytic fungi. Front Microbiol 7:1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergara C, Araujo KEC, Urquiaga S, Schultz N, Balieiro FC, Medeiros PS, Santos LA, Xavier GR, Zilli JE (2017) Dark septate endophytic fungi help tomato to acquire nutrients from ground plant material. Front Microbiol 11(8):2437

    Article  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel GA (2007) The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (neem) from Varanasi (India). Microb Ecol 54(1):119–25

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Gond SK, Mishra A et al (2014) Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Madhuca indica Gmel. at different locations in India. Ann Microbiol 64:721–734

    Article  CAS  Google Scholar 

  • Verma SK, Gond SK et al (2019) Exploring endophytic communities of plants: methods for assessing diversity, effects on host development and potential biotechnological applications. Seed Endophytes. https://doi.org/10.1007/978-3-030-10504-4_4

    Article  Google Scholar 

  • Vieira ML, Hughes AF, Gil VB et al (2012) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58(1):54–66

    Article  CAS  PubMed  Google Scholar 

  • Vieira ML, Johann S, Hughes FM, Rosa CA, Rosa LH (2014) The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah. Can J Microbiol 60(12):847–856

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Li T, Liu GY, Smith JM, Zhao ZW (2016) Unraveling the role of dark septateendophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wantzen KM et al (2012) Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agric Ecosyst Environ 151:70–79

    Article  CAS  Google Scholar 

  • Wen YC, Li HY, Lin ZA et al (2020) Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain. Sci Rep 10(1):7198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CH, Derevnina L, Kamoun S (2018) Receptor networks underpin plant immunity. Science 360(6395):1300–1301

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10(3):127–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia C, Li N, Zhang X, Feng Y, Christensen MJ, Nan Z (2016) An Epichloë endophyte improves photosynthetic ability and drymatter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions. Fungal Ecol 22:26–34

    Article  Google Scholar 

  • Yang G, Li P, Meng L, Xv K, Dong F, Qiu Y, He L, Lin L (2018) Diversity and communities of culturable endophytic fungi from different tree peonies (geoherbs and non-geoherbs), and their biosynthetic potential analysis. Braz J Microbiol 49(1):47–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao H, Sun X, He C, Maitra P, Li XC, Guo LD (2019) Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu X, Feng BM, He P, Shan LB (2017) From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu Rev Phytopathol 55:109–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycology 98(6):1076–1087

    Article  CAS  Google Scholar 

  • Zhang H, Wei TP, Li LZ, Luo MY, Jia WY, Zeng Y, Jiang YL, Tao GC (2021) Multigene phylogeny, diversity and antimicrobial potential of endophytic Sordariomycetes from Rosa roxburghii. Front Microbiol 12:755919

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Qiao L, Jayawardena RS, Hyde KD, Ma X, Wen T, Kang J (2019) Two new endophytic Colletotrichum species from Nothapodytes pittosporoides in China. MycoKeys 49:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was sponsored by grants from Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) – Proc. SEI 00193.00000147/2019-61 and Proc. SEI 00193.00000229/2021-21, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Funding code 001, and Universidade de Brasília DPG Nº 0007/2021.

Author information

Authors and Affiliations

Authors

Contributions

JBAdR: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing HMMdV: Conceptualization, Writing—Original Draft, Writing—Review & Editing ASL: Writing—Original Draft, Writing—Review & Editing.

Corresponding author

Correspondence to Adriana Sturion Lorenzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Supplementary file2 (PDF 185 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis, J.B.A., do Vale, H.M.M. & Lorenzi, A.S. Insights into taxonomic diversity and bioprospecting potential of Cerrado endophytic fungi: a review exploring an unique Brazilian biome and methodological limitations. World J Microbiol Biotechnol 38, 202 (2022). https://doi.org/10.1007/s11274-022-03386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03386-2

Keywords

Navigation