Skip to main content

Advertisement

Log in

Development of an optimization pipeline of asymmetric PCR towards the generation of DNA aptamers: a guide for beginners

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Asymmetric PCR is one of the most utilized strategies in ssDNA generation towards DNA aptamer generation due to its low cost, robustness and the low amount of starting template. Despite its advantages, careful optimization of the asymmetric PCR is still warranted to optimize the yield of ssDNA. In this present study, we have developed an extensive optimization pipeline that involves the optimization of symmetric PCR initially followed by the optimization of asymmetric PCR. In the asymmetric PCR, optimization of primer amounts/ratios, PCR cycles, annealing temperatures, template concentrations, Mg2+/dNTP concentrations and the amounts of Taq Polymerase was carried out. To further boost the generation of ssDNA, we have also integrated an additional single-stranded DNA generation method, either via lambda exonuclease or biotin-streptavidin-based separation into the optimization pipeline to further improve the yield of ssDNA generation. We have acquired 700 ± 11.3 and 820 ± 19.2 nM for A-PCR-lambda exonuclease and A-PCR-biotin-streptavidin-based separation, respectively. We urge to develop a separate optimization pipeline of asymmetric PCR for each different randomized ssDNA library before embarking on any SELEX studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avci-Adali M et al (2009) Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules (basel) 15(1):1–11

    Article  Google Scholar 

  • Bilibana MP et al (2017) Aptamers as the agent in decontamination assays (Apta-Decontamination Assays): from the environment to the potential application in vivo. J Nucleic Acids 2017:3712070

    Article  Google Scholar 

  • Citartan M et al (2011) Conditions optimized for the preparation of single-stranded DNA (ssDNA) employing lambda exonuclease digestion in generating DNA aptamer. World J Microbiol Biotechnol 27(5):1167–1173

    Article  CAS  Google Scholar 

  • Citartan M et al (2012) Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production. Songklanakarin J Sci Technol 34:125–131

    CAS  Google Scholar 

  • Citartan M et al (2016) Aptamers as the ‘capturing’ agents in aptamer-based capture assays. Microchem J 128:187–197

    Article  CAS  Google Scholar 

  • Citartan M et al (2019) Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 567:118483

    Article  CAS  Google Scholar 

  • Citartan M (2021) The dynamicity of light-up aptamers in one-pot in vitro diagnostic assays. Analyst

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  • Elskens JP, Elskens JM, Madder A (2020) Chemical modification of aptamers for increased binding affinity in diagnostic applications: current status and future prospects. INt J Mol Sci 21(12):127

    Article  Google Scholar 

  • Hao M, Qiao J, Qi H (2020) Current and emerging methods for the synthesis of single-stranded DNA. Genes (basel). 11(2):116

    Article  CAS  Google Scholar 

  • Heiat M et al (2017) Essential strategies to optimize asymmetric PCR conditions as a reliable method to generate large amount of ssDNA aptamers. Biotechnol Appl Biochem 64(4):541–548

    Article  CAS  Google Scholar 

  • Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  CAS  Google Scholar 

  • Li L et al (2021) Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and perspectives. Angew Chem Int Ed Engl 60(5):2221–2231

    Article  CAS  Google Scholar 

  • Liu LS et al (2021) Recent developments in aptasensors for diagnostic applications. ACS Appl Mater Interfaces 13(8):9329–9358

    Article  CAS  Google Scholar 

  • McKeague M, DeRosa MC (2012) Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2020:748913

    Google Scholar 

  • Mosing RK, Bowser MT (2009) Isolating aptamers using capillary electrophoresis–SELEX (CE–SELEX). In: Mayer G (ed) Nucleic acid and peptide aptamers: methods and protocols. Humana Press, Totowa, pp 33–43

    Chapter  Google Scholar 

  • Nomura Y et al (2010) Conformational plasticity of RNA for target recognition as revealed by the 2.15: a crystal structure of a human IgG-aptamer complex. Nucleic Acids Res 38(21):7822–7829

    Article  CAS  Google Scholar 

  • Odeh F et al (2019) Aptamers chemistry: chemical modifications and conjugation strategies. Molecules 25(1):3

    Article  Google Scholar 

  • Piganeau N, Schroeder R (2003) Aptamer structures: a preview into regulatory pathways? Chem Biol 10(2):103–104

    Article  CAS  Google Scholar 

  • Schütze T et al (2011) Probing the SELEX process with next-generation sequencing. PLoS ONE 6(12):29604

    Article  Google Scholar 

  • Svobodová M et al (2012) Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal Bioanal Chem 404(3):835–842

    Article  Google Scholar 

  • Tabarzad M et al (2014) Challenges to design and develop of DNA aptamers for protein targets. I. Optimization of asymmetric PCR for generation of a single stranded DNA library. Iran J Pharm Res 13:133–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thevendran R et al (2020) Strategies to bioengineer aptamer-driven nanovehicles as exceptional molecular tools for targeted therapeutics: a review. J Control Release 323:530–548

    Article  CAS  Google Scholar 

  • Tolle F et al (2014) By-product formation in repetitive PCR amplification of DNA libraries during SELEX. PLoS ONE 9(12):114693

    Article  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  • Wang J et al (2021) Development of aptamer-based molecular tools for rapid intraoperative diagnosis and in vivo imaging of serous ovarian cancer. ACS Appl Mater Interfaces 13(14):16118–16126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Ministry of Higher Education, Malaysia for Skim Latihan Akademik Bumiputra (SLAB). We declare no conflict of interest in regards to this manuscript.

Funding

Citartan M and Tang TH were supported by USM Research University Grant (1001.CIPPT.8011095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marimuthu Citartan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeoh, T.S., Anna, A., Tang, TH. et al. Development of an optimization pipeline of asymmetric PCR towards the generation of DNA aptamers: a guide for beginners. World J Microbiol Biotechnol 38, 31 (2022). https://doi.org/10.1007/s11274-021-03209-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03209-w

Keywords

Navigation