Skip to main content

Advertisement

Log in

Comparison of different methods for generation of single-stranded DNA for SELEX processes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Single-stranded DNA (ssDNA) generation is a crucial step in several molecular biology applications, such as sequencing or DNA chip and microarray technology. Molecules of ssDNA also play a key role in the selection of ssDNA aptamers through Systematic Evolution of Ligands by EXponential enrichment (SELEX). With particular interest for this application, herein we present a comparative study of the most used methods for generation of ssDNA used in SELEX, such as asymmetric PCR, enzyme digestion and magnetic separation with streptavidin beads. In addition, we evaluate a new technique that combines asymmetric PCR and enzyme digestion with the aim to achieve the maximum efficiency in ssDNA generation. The methods studied were compared in terms of quality of ssDNA using electrophoretic analysis and generated ssDNA yields were quantitatively measured using an Enzyme-Linked OligoNucleotide Assay (ELONA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  2. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  CAS  Google Scholar 

  3. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponentional enrichment: RNA ligands to bacteiophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  4. Espelund M et al (1990) A simple method for generating single-stranded DNA probes labeled to high activities. Nucleic Acids Res 18:6157–6158

    Article  CAS  Google Scholar 

  5. Hultman T et al (1989) Direct solid-phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res 17:4937–4946

    Article  CAS  Google Scholar 

  6. Stoltenburg R et al (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91

    Article  CAS  Google Scholar 

  7. Walder RY et al (1993) Use of PCR primers containing a 3′-terminal ribose residue to prevent cross-contamination of amplified sequences. Nucleic Acids Res 21:4339–4343

    Article  CAS  Google Scholar 

  8. Wiliams KP, Bartel DP (1995) PCR product with strands of unequal length. Nucleic Acids Res 23:4220–4221

    Article  Google Scholar 

  9. Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85:7652–7656

    Article  CAS  Google Scholar 

  10. Wu L, Curran J (1999) An allosteric synthetic DNA. Nucleic Acids Res 27:1512–1516

    Article  CAS  Google Scholar 

  11. Nadal P et al (2011) DNA Aptamers against the Lup an 1 Food Allergen. PLoS One 7:e35253

    Article  Google Scholar 

  12. Nikiforov TT et al (1994) The use of phosphorothioate primers and exonuclease hydrolysis for the preparation of single-stranded PCR products and their detection by solid-phase hybridization. Cold Spring Harbor Lab Press 3:285–291

    CAS  Google Scholar 

  13. Avci-Adali M et al (2010) Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules 15:1–11

    Article  CAS  Google Scholar 

  14. Higuchi RG, Ochman H (1989) Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res 17:5865

    Article  CAS  Google Scholar 

  15. Marimuthu C et al (2011) Conditions optimized for the preparation of single-stranded DNA (ssDNA) employing lambda exonuclease digestion in generating DNA aptamer. World J Microbiol Biotechnol 27:1167–1173

    Article  Google Scholar 

  16. Dickman M, Hornby DP (2000) Isolation of single-stranded DNA using denaturing DNA chromatography. Anal Biochem 284:164–167

    Article  CAS  Google Scholar 

  17. Diggle MA, Clarke SC (2003) A novel method for preparing single-stranded DNA for Pyrosequencing (TM). Mol Biotechnol 24:221–224

    Article  CAS  Google Scholar 

  18. Groth M et al (2006) Method for preparing single-stranded DNA templates for Pyrosequencing using vector ligation and universal biotinylated primers. Anal Biochem 356:194–201

    Article  CAS  Google Scholar 

  19. Stahl S et al (1988) Solid-phase DNA sequencing using the biotin–avidin system. Nucleic Acids Res 16:3025–3038

    Article  CAS  Google Scholar 

  20. Rehbein H et al (1998) Comparison of different methods to produce single-stranded DNA for identification of canned tuna by single-strand conformation polymorphism analysis. Electrophoresis 19:1381–1384

    Article  CAS  Google Scholar 

  21. Dziembowski A, Stepien PP (2001) Analysis of 3′ and 5′ ends of RNA by solid-phase S1 nuclease mapping. Anal Biochem 294:87–89

    Article  CAS  Google Scholar 

  22. Beaulieu M et al (2001) PCR candidate region mismatch scanning: adaptation to quantitative, high-throughput genotyping. Nucleic Acids Res 29:1114–1124

    Article  CAS  Google Scholar 

  23. Laveder P et al (2002) A two-step strategy for constructing specifically self-subtracted cDNA libraries. Nucleic Acids Res 30:e38

    Article  Google Scholar 

  24. Brinker A et al (2010) Lambda exonuclease pre-treatment for improved DNA-chip performance depends on the relative probe-target position. Biosens Bioelectron 26:898–902

    Article  CAS  Google Scholar 

  25. Gao HF et al (2003) Comparison of different methods for preparing single stranded DNA for oligonucleotide microarray. Anal Lett 36:2849–2863

    Article  CAS  Google Scholar 

  26. Marimuthu C et al (2012) Single-Stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137:1307–1315

    Article  CAS  Google Scholar 

  27. Kaltenbboeck B, Kousoulas KG (1996) PCR sequencing protocols. Methods Mol Biol 65:149–153

    Google Scholar 

  28. Paul A et al (2009) Streptavidin-coated magnetic beads for DNA a multitude of problems during cell-SELEX. Oligonucleotides 19:243–254

    Article  CAS  Google Scholar 

  29. Wilson R (2011) Preparation of single-stranded DNA from PCR products with streptavidin magnetic beads. Nucleic Acid Ther. doi:10.1089nat.2011.0322

  30. Srisawat C, Engelke DR (2001) Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7:632–641

    Article  CAS  Google Scholar 

  31. Tahiri-Alaoui A et al (2002) High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res 30:e45

    Article  Google Scholar 

  32. James W (2000) Aptamers. Encycl Anal Chem 4848–4871

  33. Fukusaki E et al (2001) SELEX for tubulin affords specific T-rich DNA aptamers. Bioorg Med Chem Lett 11:2927–2930

    Article  CAS  Google Scholar 

  34. Wang CL et al (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol 102:15–22

    Article  CAS  Google Scholar 

Download references

Acknowledgement

M.S. acknowledges the support from a FI predoctoral scholarship of the Generalitat de Catalunya, and Recercaixa for the project Aptalup as well as the FP7-ICT-7 Project D-Liver, Grant Agreement no. 287596.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. O’ Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svobodová, M., Pinto, A., Nadal, P. et al. Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal Bioanal Chem 404, 835–842 (2012). https://doi.org/10.1007/s00216-012-6183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6183-4

Keywords

Navigation