Skip to main content

Advertisement

Log in

Biodegradation of chlorpropham and its major products by Bacillus licheniformis NKC-1

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] (CIPC), an important phenyl carbamate herbicide, has been used as a plant growth regulator and potato sprout suppressant (Solanum tuberosum L) during long-term storage. A bacterium capable of utilizing the residual herbicide CIPC as a sole source of carbon and energy was isolated from herbicide-contaminated soil samples employing selective enrichment method. The isolated bacterial strain was identified as Bacillus licheniformis NKC-1 on the basis of its morphological, cultural, biochemical characteristics and also by phylogenetic analysis based on 16S rRNA gene sequences. The organism degraded CIPC through its initial hydrolysis by CIPC hydrolase enzyme to yield 3-chloroaniline (3-CA) as a major metabolic product. An inducible 3-CA dioxygenase not only catalyzes the incorporation of molecular oxygen but also removes the amino group by the deamination yielding a monochlorinated catechol. Further, degradation of 4-chlorocatechol proceeded via ortho- ring cleavage through the maleylacetate process. 3-Chloroaniline and 4-chlorocatechol are the intermediates in the CIPC degradation which suggested that dechlorination had occurred after the aromatic ring cleavage. The presence of these metabolites has been confirmed by using ultra-violet (UV), high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), Fourier transmission-infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and gas chromatography-mass (GC-MS) spectral analysis. Enzyme activities of CIPC hydrolase, 3-CA dioxygenase and chlorocatechol 1, 2-dioxygenase were detected in the cell-free-extract of the CIPC culture and are induced by cells of NKC-1 strain. These results demonstrate the biodegradation pathways of herbicide CIPC and promote the potential use of NKC-1 strain to bioremediate CIPC-contaminated environment with subsequent release of ammonia, chloride ions and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aml AE, Moghazy AM, Gouda AEA, Elshatoury RSA (2014) Inhibition of sprout growth and increase storability of processing potato by an anti-sprouting agent. Trends Hort Res 4:31–40

    Article  Google Scholar 

  • Angioi S, Polati S, Roz M, Rinaudo C, Gianotti V, Gennaro MC (2005) Sorption studies of chloroanilines on kaolinite and montmorillonite. Environ Pollut 134:35–43

    Article  PubMed  CAS  Google Scholar 

  • Arnow LE (1937) Colorimetric determination of the components of 3,4- dihydroxyphenylalanine- tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  • Brunsbach FR, Reineke W (1993) Degradation of chloroanilines in soil slurry by specialized organisms. Appl Microbiol Biotech 40:402–407

    Article  CAS  Google Scholar 

  • Camara B, Nikodem P, Bielecki P, Bobadilla R, Junca H, Pieper DH (2009) Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1. J Bacteriol 191:4905–4915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniels-Lake BJ, Pruski K, Prange RK (2011) Using ethylene gas and chlorpropham potato sprout inhibitors together. Potato Res 54:223–236

    Article  CAS  Google Scholar 

  • David B, Lhote M, Faure V, Boule P (1998) Ultrasonic and photochemical degradation of chlorpropham and 3-chloroaniline in aqueous solution. Water Res 32:2451–2461

    Article  CAS  Google Scholar 

  • Duncan DM (1955) Multiple range and multiple tests. Biometrics 42:1–42

    Article  Google Scholar 

  • Environmental Protection US, Agency (1987) Pesticide fact sheet number 150: Chlorpropham. US EPA, Office of Pesticide Programs, Registration Div, Washington, DC. Dec

    Google Scholar 

  • Farawela J (2009) Microbial degradation of carbamate pesticides. http://www.authorstream.com/Presentation/farawela-235505-biodegradation-carbamate-insecticides-educationppt-powerpoint/2009. Accessed 17 December 2013

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Fukumori F, Saint CP (1997) Nucleotide sequences and regulational analysis of genes involved in the conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). J Bacteriol 179:399–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamez-Castillo D, Cruz E, Iguaz A, Arroqui C, Virseda P (2013) Effects of essential oils on sprout suppression and quality of potato cultivars. Postharvest Biol Tech 82:15–21

    Article  CAS  Google Scholar 

  • Greif D, Wesner D, Regtmeier J, Anselmetti D (2010) High-resolution imaging of surface patterns of single bacterial cells. Ultramicroscopy 110:1290–1296

    Article  PubMed  CAS  Google Scholar 

  • Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 9:29–71

    Article  PubMed  CAS  Google Scholar 

  • Hinteregger C, Loidl M, Streichsbier F (1992) Characterization of isofunctional ring-cleaving enzymes in aniline and 3-chloroaniline degradation by Pseudomonas acidovorans CA28. FEMS Microbiol Lett 76:261–266

    Article  PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Iwasaki I, Utsumi S, Ozawa T (1952) New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn 25:226–226

    Article  CAS  Google Scholar 

  • Kaufman DD, Kearney PC (1965) Microbial degradation of isopropyl N-3-chlorophenyl carbamate and 2-chloroethyl-N-3-chlorophenyl carbamate. Appl Environ Microbiol 13:443–446

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Latorre J, Reineke W, Knackmuss HJ (1984) Microbial metabolism of chloroanilines: enhanced evolution by the natural genetic exchange. Arch Microbiol 140:159–165

    Article  CAS  Google Scholar 

  • Loidl M, Hinteregger C, Ditzelmuller G, Ferschl A, Streichsbier F (1990) Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains. Arch Microbiol 155:56–61

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mani F, Bettaieb T, Doudech N, Hannachi C (2014) Physiological mechanisms for potato dormancy release and sprouting: a review. Afr Crop Sci J 22:155–174

    Google Scholar 

  • Marty JL, Khaflf T, Vega D, Bastide J (1986) Degradation of phenyl carbamate herbicides by Pseudomonas alcaligenes isolated from soil. Soil Biol Biochem 18:649–653

    Article  CAS  Google Scholar 

  • Mohammed NS, Flowers TH, Duncan HJ (2015) HPLC-UV methods for the analysis of potato sprout inhibitor chlorpropham and its metabolite 3-chloroaniline in potatoes. IOSR J Environ Sci Toxicol Food Technol 9:78–85

    CAS  Google Scholar 

  • Nakagawa H, Lockman JC, Frankel WL, Hampel H, Steenblock K, Burgart LJ, Thibodeau SN, Chapelle AD (2004) Mismatch repair gene PMS2: disease-causing germline mutations are frequent in patients whose tumors stain negative for PMS2; protein, but paralogous genes obscure mutation detection and interpretation. Cancer Res 64:4721–4727

    Article  PubMed  CAS  Google Scholar 

  • Narang AS, Choudhury DR, Richards A (1982) Separation of aromatic amines by thin-layer and high-performance liquid chromatography. J Chromatog Sci 20:235–237

    Article  CAS  Google Scholar 

  • Nikodem P, Hecht V, Schlomann M, Pieper DH (2003) New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. J Bacteriol 185:6790–6800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park G, Oh H, Ahn S (2009) Improvement of ammonia analysis by a Phenate method in water and wastewater. Bull Korean Chem Soc 30:2032–2038

    Article  CAS  Google Scholar 

  • Paul V, Pandey R, Ezekiel R, Kumar D (2014) Potential of glyphosate as a sprout suppressant for potato (Solanum tuberosum L.) tubers during storage. Indian J Plant Physiol 19:293–305

    Article  Google Scholar 

  • Pease HL (1962) Herbicide residues, separation and colorimetric determination of monuron and diuron residues. J Agric Food Chem 10:279–281

    Article  CAS  Google Scholar 

  • Pidiyar VJ, Jangid K, Patole MS, Shouche YS (2004) Studies on the cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16S rRNA gene analysis. Am J Trop Med Hyg 70:597–603

    Article  PubMed  CAS  Google Scholar 

  • Rouillon R, Poulain C, Bastide J, Coste CM (1989) Degradation of the herbicide chlorpropham by some Ectomycorrhizal fungi in pure culture. Agric Ecosyst Environ 28:421–424

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schmidt E, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Biochem J 192:339–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seubert NYW (1960) Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis, new species. J Bacteriol 79:426–434

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sihtmae M, Mortimer M, Kahru A, Blinova I (2010) Toxicity of five anilines to crustaceans, protozoa, and bacteria. J Serb Chem Soc 75:1291–1302

    Article  CAS  Google Scholar 

  • Smith MJ, Bucher G (2012) Tools to study the degradation and loss of the N-phenyl carbamate chlorpropham comprehensive review. Environ Int 49:38–50

    Article  PubMed  CAS  Google Scholar 

  • Surovtseva EG, Ivoilov VS, Vasileva GK, Belyaev SS (1996) Degradation of chlorinated anilines by certain representatives of the genera Aquaspirillum and Paracoccus Microbiol 65:553–559

    Google Scholar 

  • Svehla G (1996) Vogel’s qualitative inorganic analysis, 7th ed., Longman Sc & Tech, Harlow

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaughn KC, Lehnen LP (JR) (1991) Mitotic disrupter herbicides. Weed Sci 39:450–457

    CAS  Google Scholar 

  • Walter WM, Richard WE (1991) Purification and characterization of the N-methylcarbamate hydrolase from Pseudomonas strain CRL-OK. Appl Environ Microbiol 57:3679–3682

    Google Scholar 

  • Zeyer J, Kearney PC (1982) Microbial degradation of p-chloroaniline as sole carbon and nitrogen source. Pesti Biochem Physiol 17:215–223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the DST, New Delhi, for providing financial assistance (Grant No. PURSE-Phase-2/3 (G), SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrappa M. Kamanavalli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 512 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujar, N.K., Premakshi, H.G., Laad, S. et al. Biodegradation of chlorpropham and its major products by Bacillus licheniformis NKC-1. World J Microbiol Biotechnol 34, 112 (2018). https://doi.org/10.1007/s11274-018-2494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2494-8

Keywords

Navigation