Skip to main content
Log in

Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodegradation of phenolic compounds is a promising alternative to physical and chemical methods used to remove these toxic pollutants from the environment. The ability of various microorganisms to metabolize phenol and its derivatives (alkylphenols, nitrophenols and halogenated derivatives) has therefore been intensively studied. Knowledge of the enzymes catalyzing the individual reactions, the genes encoding these enzymes and the regulatory mechanisms involved in the expression of the respective genes in bacteria serves as a basis for the development of more efficient degraders of phenols via genetic engineering methods. Engineered bacteria which efficiently degrade phenolic compounds were constructed in laboratories using various approaches such as cloning the catabolic genes in multicopy plasmids, the introduction of heterologous genes or broadening the substrate range of key enzymes by mutagenesis. Efforts to apply the engineered strains in in situ bioremediation are problematic, since engineered strains often do not compete successfully with indigenous microorganisms. New efficient degraders of phenolic compounds may be obtained by complex approaches at the organism level, such as genome shuffling or adaptive evolution. The application of these engineered bacteria for bioremediation will require even more complex analysis of both the biological characteristics of the degraders and the physico-chemical conditions at the polluted sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arora PK, Bae H (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 13:31. doi:10.1186/1475-2859-13-31

    Article  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59. doi:10.1016/j.jhazmat.2013.12.011

    Article  CAS  Google Scholar 

  • Cai M, Xun L (2002) Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680. doi:10.1128/JB.184.17.4672-4680.2002

    Article  CAS  Google Scholar 

  • Crawford RL, Jung CM, Strap JL (2007) The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 18:525–539. doi:10.1007/s10532-006-9090-6

    Article  CAS  Google Scholar 

  • Dai M, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397. doi:10.1128/AEM.70.4.2391-2397.2004

    Article  CAS  Google Scholar 

  • Díaz E, Prieto MA (2000) Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotechnol 11:467–475

    Article  Google Scholar 

  • Fu H, Zhang JJ, Xu Y, Chao HJ, Zhou NY (2017) Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors. Lett Appl Microbiol 64:203–209. doi:10.1111/lam.12696

    Article  CAS  Google Scholar 

  • Gupta S, Saxena M, Saini N, Mahmooduzzafar, Kumar R, Kumar A (2012) An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein. PLoS ONE 7:e43527. doi:10.1371/journal.pone.0043527

    Article  CAS  Google Scholar 

  • Hu F, Jiang X, Zhang JJ, Zhou NY (2014) Construction of an engineered strain capable of degrading two isomeric nitrophenols via a sacB- and gfp-based markerless integration system. Appl Microbiol Biotechnol 98:4749–4756. doi:10.1007/s00253-014-5567-0

    Article  CAS  Google Scholar 

  • Kim Y, Park K, Kim W, Shin J, Kim J, Park H, Rhee I (2007) Cloning and characterization of a catechol-degrading gene cluster from 3,4-dichloroaniline degrading bacterium Pseudomonas sp. KB35B. J Agr Food Chem 55:4722–4727

    Article  CAS  Google Scholar 

  • Kolvenbach BA, Corvini PFX (2012) The degradation of alkylphenols by Sphingomonas sp. strain TTNP3—A review on seven years of research. New Biotechnol 30:88–95. doi:10.1016/j.nbt.2012.07.008

    Article  CAS  Google Scholar 

  • Leungsakul T, Johnson GR, Wood TK (2006) Protein engineering of the 4-methyl-5-nitrocatechol monooxygenase from Burkholderia sp. strain DNT for enhanced degradation of nitroaromatics. Appl Environ Microbiol 72:3933–3939. doi:10.1128/AEM.02966-05

    Article  CAS  Google Scholar 

  • Nešvera J, Rucká L, Pátek M (2015) Catabolism of phenol and its derivatives in bacteria: genes, their regulation, and use in the biodegradation of toxic pollutants. Adv Appl Microbiol 93:107–160. doi:10.1016/bs.aambs.2015.06.002

    Article  Google Scholar 

  • Nga DP, Altenbuchner J, Heiss GS (2004) NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus Hl PM-1. J Bacteriol 186:98–103. doi:10.1128/JB.186.1.98-103.2004

    Article  CAS  Google Scholar 

  • Peng Z, Yan Y, Xu Y, Takeo M, Yu H, Zhao Z et al (2010) Improvement of an E. coli bioreporter for monitoring trace amounts of phenol by deletion of the inducible sigma54-dependent promoter. Biotechnol Lett 32:1265–1270. doi:10.1007/s10529-010-0317-6

    Article  CAS  Google Scholar 

  • Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794. doi:10.1111/j.1574-6976.2008.00122.x

    Article  Google Scholar 

  • Schirmer F, Ehrt S, Hillen W (1997) Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol 179:1329–1336

    Article  CAS  Google Scholar 

  • Shingler V (2003) Integrated regulation in response to aromatic compounds: from signal to attractive behaviour. Environ Microbiol 5:1226–1241

    Article  CAS  Google Scholar 

  • Soda S, Ike M, Fujita M (1998) Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol. J Ferment Bioeng 86:90–96

    Article  CAS  Google Scholar 

  • Szököl J, Rucká L, Šimčíková M, Halada P, Nešvera J, Pátek M (2014) Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl Microbiol Biotechnol 98:8267–8279. doi:10.1007/s00253-014-5881-6

    Article  Google Scholar 

  • Takeo M, Murakami M, Niihara S, Yamamoto K, Nishimura M, Kato D, Negoro S (2008) Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. J Bacteriol 190:7367–7374. doi:10.1128/JB.00742-08

    Article  CAS  Google Scholar 

  • Teramoto M, Harayama S, Watanabe K (2001) PhcS represses gratuitous expression of phenol-metabolizing enzymes in Comamonas testosteroni R5. J Bacteriol 183:4227–4234. doi:10.1128/JB.183.14.4227-4234.2001

    Article  CAS  Google Scholar 

  • Tiirola MA, Wang H, Paulin L, Kulomaa MS (2002) Evidence for natural horizontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphingomonads. Appl Environ Microbiol 68:4495–4501. doi:10.1128/AEM.68.9.4495-4501.2002

    Article  CAS  Google Scholar 

  • Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68:474–500. doi:10.1128/MMBR.68.3.474-500.2004

    Article  CAS  Google Scholar 

  • Veselý M, Knoppová M, Nešvera J, Pátek M (2007) Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl Microbiol Biotechnol 87:159–168. doi:10.1007/s00253-007-0997-6

    Article  Google Scholar 

  • Wise AA, Kuske CR (2000) Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl Environ Microbiol 66:163–169

    Article  CAS  Google Scholar 

  • Yang S, Chen D, Li N, Xu Q, Li H, He J, Lu J (2016) Surface-nanoengineered bacteria for efficient local enrichment and biodegradation of aqueous organic wastes: using phenol as a model compound. Adv Mater 28:2916–2922. doi:10.1002/adma.201505493

    Article  CAS  Google Scholar 

  • Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ et al (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44:2240–2254. doi:10.1093/nar/gkw055

    Article  CAS  Google Scholar 

  • Yu H, Peng Z, Zhan Y, Wang J, Yan Y, Chen M et al (2011) Novel regulator MphX represses activation of phenol hydroxylase genes caused by XylR/DmpR-type regulator MphR in Acinetobacter calcoaceticus. PLoS ONE 6:e17350. doi:10.1371/journal.pone.0017350

    Article  CAS  Google Scholar 

  • Zhang W, Zhang J, Jiang X, Chao H, Zhou N (2015) Transcriptional activation of multiple operons involved in para-nitrophenol degradation by Pseudomonas sp. strain WBC-3. Appl Environ Microbiol 81:220–230. doi:10.1128/AEM.02720-14

    Article  Google Scholar 

  • Zídková L, Szököl J, Rucká L, Pátek M, Nešvera J (2013) Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains. Int Biodeter Biodegr 84:179–184. doi:10.1016/j.ibiod.2012.05.017

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Technology Agency of the Czech Republic (Grant TA04021212) and the Institute of Microbiology of the Academy of Sciences of the Czech Republic, v.v.i. (Project RVO61388971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pátek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rucká, L., Nešvera, J. & Pátek, M. Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World J Microbiol Biotechnol 33, 174 (2017). https://doi.org/10.1007/s11274-017-2339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2339-x

Keywords

Navigation