Skip to main content
Log in

Analysis of bacterial, fungal and archaeal populations from a municipal wastewater treatment plant developing an innovative aerobic granular sludge process

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mature granules and flocs from aerobic sludge were collected from the wastewater treatment plant (WWTP) treating both municipal and industrial effluents in Haining city China. This plant has been operating under conditions favoring aerobic granular sludge formation, for over 3 years, suggesting that the granules, which stably retained under changing effluent conditions, may contain unique microbial populations. Microbial analysis indicated that the granular sludge was primarily composed of Planctomycetes, Proteobacteria and Bacteroidetes from the bacterial phyla. Interestingly, microbial communities were also observed to be stratified between the structural features of the sludge. For example, Euryarchaeota was found to make up the majority of the archaea found in the granules while Methanosaeta was dominant in the flocs. Additionally, granules were found to contain, 34 phyla and 222 genera of bacteria, 4 phyla and 13 genera of fungi, and 2 phyla and 17 genera of archaea. While flocs contained, 32 phyla and 203 genera of bacteria, 6 phyla and 26 genera of fungi, and 2 phyla and 12 genera of archaea. This biodiversity signifying a preservation of bacterial and archaeal population in granules, and fungal populations in flocs may result from the sedimentary characteristics of the granules. This suggests microbes uniquely associated in the granules are playing a key role in structure formation and stability of the granular ecosystem, which is maintained by the longer sludge retention time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adav SS, Lee DJ, Show KY, Tay JH (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26(5):411–423

    Article  CAS  Google Scholar 

  • APHA (2006) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  • Cydzik-Kwiatkowska A, Wojnowska-Baryła I (2015) Nitrogen-converting communities in aerobic granules at different hydraulic retention times (HRTs) and operational modes. World J Microbiol Biotechnol 31:75–83

    Article  CAS  Google Scholar 

  • de Kreuk MK (2006) Aerobic granular sludge: scaling up a new technology. Delft University of Technology, TU Delft

    Google Scholar 

  • Enrigt AM, Collins G, Flaherty VO (2007) Temporal microbial diversity changes in solvent degrading anaerobic granular sludge from low temperature (15 °C) wastewater treatment bioreactors. Syst Appl Microbiol 30(6):471–482

    Article  Google Scholar 

  • Gao DW, Liu L, Liang H, Wu WM (2011) Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit Rev Biotechnol 31(2):137–152

    Article  CAS  Google Scholar 

  • Giesen A, de Bruin LMM, Niermans RP, van der Roest HF (2013) Advancements in the application of aerobic granular biomass technology for sustainable treatment of wastewater. Water Pract Technol 8(1):47–54

    Article  Google Scholar 

  • Gonzalez-Gil G, Holliger C (2014) Aerobic granules: microbial landscape and architecture, stages, and practical implications. Appl Environ Microbiol 80(11):3433–3441

    Article  CAS  Google Scholar 

  • Gray ND, Miskin IP, Kornilova O, Curtis TP, Head IM (2002) Occurrence and activity of archaea in aerated activated sludge wastewater treatment plants. Environ Microbiol 4(3):158–168

    Article  Google Scholar 

  • Guo F, Zhang SH, Yu X, Wei B (2011) Variations of both bacterial community and extracellular polymers: the inducements of increase of cell hydrophobicity from biofloc to aerobic granular sludge. Bioresour Technol 102(11):6421–6428

    Article  CAS  Google Scholar 

  • Hiraswa JS, Sarti A, Aguila NKS, Varesche MBA (2008) Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD: sulfate ratios in a UASB reactor. Anaerobe 14(4):209–210

    Article  Google Scholar 

  • Huang KL, Zhang XX, Shi P, Wu B, Ren HQ (2014) A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and illumina high-throughput sequencing. Ecotoxicol Environ Saf 109:15–21

    Article  CAS  Google Scholar 

  • Huang WL, Li B, Zhang C, Zhang ZY, Lei ZF, Lu BW, Zhou BL (2015) Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresour Technol 179:187–192

    Article  CAS  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67(10):4399–4406

    Article  CAS  Google Scholar 

  • Jungles MK, Figueroa M, Morales N, Val del Río A, da Costa RHR, Campos JL, Mendez R (2011) Start up of a pilot scale aerobic granular reactor for organic matter and nitrogen removal. J Chem Technol Biotechnol 86(5):763–768

    Article  CAS  Google Scholar 

  • Khan MZ, Mondal PK, Sabir S (2013) Aerobic granulation for wastewater bioremediation: a review. Can J Chem Eng 91(6):1045–1058

    Article  CAS  Google Scholar 

  • Lee DJ, Chen TY, Show KY, Whiteley CG, Tay JH (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol Adv 28(6):919–934

    Article  CAS  Google Scholar 

  • Li J, Ding LB, Cai A, Huang GX, Horn H (2014) Aerobic sludge granulation in a full-scale sequencing batch reactor. BioMed Res Int. doi:10.1155/2014/268789

    Google Scholar 

  • Liu H, Li GW, Li XF, Chen J (2008) Molecular characterization of bacterial community in aerobic granular sludge stressed by pentachlorophenol. J Environ Sci (China) 20(10):1243–1249

    Article  CAS  Google Scholar 

  • Liu YQ, Kong YH, Tay JH, Zhu JR (2011) Enhancement of start-up of pilot-scale granular SBR fed with real wastewater. Sep Purif Technol 82:190–196

    Article  CAS  Google Scholar 

  • Mckeown RM, Scully C, Enrigt AM, Chinalia FA, Lee C, Mahony T, Collins G, O’Flaherty V (2009) Psychrophilic methanogenic community development during long term cultivation of anaerobic granular biofilms. ISME J 3(11):1231–1242

    Article  CAS  Google Scholar 

  • McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12(2):378-392

    Article  CAS  Google Scholar 

  • Morales N, Figueroa M, Fra-Vázquez A, Val del Río A, Campos JL, Mosquera-Corral A, Méndez R (2013) Operation of an aerobic granular pilot scale SBR plant to treat swine slurry. Process Biochem 48(8):1216–1221

    Article  CAS  Google Scholar 

  • More TT, Yan S, Tyagi RD, Surampalli RY (2010) Potential use of filamentous fungi for wastewater sludge treatment. Bioresour Technol 101(20):7691–7700

    Article  CAS  Google Scholar 

  • Morgenroth E, Sherden T, Van Loosdrecht MCM, Heijnen JJ, Wilderer PA (1997) Aerobic granular sludge in a sequencing batch reactor. Water Res 31(12):3191–3194

    Article  CAS  Google Scholar 

  • Ni BJ, Xie WM, Liu SG, Yu HQ, Wang YZ, Wang G, Dai XL (2009) Granulation of activated sludge in a pilot-scale sequencing batch reactor for treatment of low-strength municipal wastewater. Water Res 43(3):751–761

    Article  CAS  Google Scholar 

  • Rocktaschel T, Klarmann C, Ochoa J, Boisson P, Sorensen K, Horn H (2015) Influence of the granulation grade on the concentration of suspended solids in the effluent of a pilot scale sequencing batch reactor operated with aerobic granular sludge. Sep Purif Technol 142:234–241

    Article  Google Scholar 

  • Roesch L, Fulthorpe R, Riva A, Casella G, Hadwin A, Ken AD, Daroub SH, Canargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    CAS  Google Scholar 

  • Show KY, Lee DJ, Tay JH (2011) Aerobic granulation: advances and challenges. Appl Biochem Biotechnol 167(6):1622–1640

    Article  Google Scholar 

  • Subramanian SB, Yan S, Tyagi RD, Surampalli RY (2008) A new, pellet-forming fungal strain: its isolation, molecular identification, and performance for simultaneous sludge-solids reduction, flocculation, and dewatering. Water Environ Res 80(9):840–852

    Article  CAS  Google Scholar 

  • Subramanian S, Yan S, Tyagi R, Surampalli R (2010) SSPRSD using a filamentous fungal strain Penicillium expansum BS30 isolated from wastewater sludge. J Environ Eng 136(7):719–730

    Article  CAS  Google Scholar 

  • Weber SD, Hofmann A, Pilhofer M, Wanner G, Agerer R, Ludwig W, Schleifer KH, Fried J (2009a) The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses. FEMS Microbiol Ecol 68(2):246–254

    Article  CAS  Google Scholar 

  • Weber SD, Ludwig W, Schleifer KH, Fried J (2009b) Microbial composition and structure of aerobic granular sewage biofilms. Appl Environ Microbiol 73(19):6233–6240

    Article  Google Scholar 

  • Yang QX, Wang J, Wang HT, Chen XY, Ren SW, Li XL, Zhang H, Li XM (2012) Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system. Bioresour Technol 117:155–163

    Article  CAS  Google Scholar 

  • Zhang T, Shao MF, Lin Y (2012) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plant. ISME J 6(6):1137–1147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (51478433). The authors thank Dr. Jonathan Perreault and Philippe Constant for helpful discussions and revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, J., Tao, Y. et al. Analysis of bacterial, fungal and archaeal populations from a municipal wastewater treatment plant developing an innovative aerobic granular sludge process. World J Microbiol Biotechnol 33, 14 (2017). https://doi.org/10.1007/s11274-016-2179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2179-0

Keywords

Navigation