Skip to main content
Log in

Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chlamydomonas reinhardtii is able to accumulate large amounts of triacylglycerides, the major feedstock for biodiesel production, when grown under stress conditions. In order to characterize gene transcripts induced under nitrogen, iron, and sulfur deprivation in C. reinhardtii; 583 expressed sequence tags (ESTs) were generated through a cDNA library. These sequences were subjected to contig assembly resulting in 30 contigs and 76 singletons. The comparison of the ESTs obtained with public databases allowed to assign putative functions to 66.7 % of the sequences. An important group of the identified genes are related to the lipid metabolic process. A phylogenetic analysis of these sequences identified five isoforms of diacylglycerol O-acyltransferase type 2 (DGAT-2). These genes were selected to measure their relative expression under these stress conditions by means of qRT-PCR. According to the results, the accumulation of DGTT1 mRNA increases considerably under nitrogen and iron inanition when compared to the other isoforms, which indicated that each isoform participates at different levels under each stress condition. These results can help to identify potential genes to be overexpressed by genetic engineering in C. reinhardtii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benning C, Miller R, Moellering ER (2010) Enzyme-directed oil biosynthesis in microalgae. Michigan State University Board of Trustees

  • Boger P (2003) Mode of action for chloroacetamides and functionally related compounds. J Pestic Sci 28:324–329

    Article  CAS  Google Scholar 

  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825

    Article  CAS  Google Scholar 

  • Buist PH (2004) Fatty acid desaturases: selecting the dehydrogenation channel. Nat Prod Rep 21:249–262

    Article  CAS  Google Scholar 

  • Cao H (2011) Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. BMC Res Notes 4:249

    Article  CAS  Google Scholar 

  • Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP (2011) Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 48:60–75

    Article  CAS  Google Scholar 

  • Courchesne NM, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  Google Scholar 

  • Deng X, Fei X, Li Y (2011) The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. Afr J Microbiol Res 5:260–270

    CAS  Google Scholar 

  • Diener CA, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 12:853–870

    Article  CAS  Google Scholar 

  • Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390

    Article  CAS  Google Scholar 

  • Fox BG, Lyle KS, Rogge CE (2004) Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Chem Res 37:421–429

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  Google Scholar 

  • Glaesener AG, Merchant SS, Blaby-Haas CE (2013) Iron economy in Chlamydomonas reinhardtii. Front Plant Sci 4:337

    Article  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  Google Scholar 

  • Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Hung C, Ho MY, Kanehara K, Nakamura Y (2013) Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii. FEBS Lett 587:2364–2370

    Article  CAS  Google Scholar 

  • Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793

    Article  CAS  Google Scholar 

  • Juergens MT, Deshpande RR, Lucker BF, Park JJ, Wang H, Gargouri M, Holguin FO, Disbrow B, Schaub T, Skepper JN, Kramer DM, Gang DR, Hicks LM, Shachar-Hill Y (2015) The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. Plant Physiol 167:558–573

    Article  CAS  Google Scholar 

  • Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M, Hirono M, Sato N, Fukuzawa H (2015) Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator 1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. Plant Physiol 168:752–764

    Article  CAS  Google Scholar 

  • Kropat J, Hong-Hermesdorf A, Casero D, Ent P, Castruita M, Pellegrini M, Merchant SS, Malasarn D (2011) A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J 66:770–780

    Article  CAS  Google Scholar 

  • La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20

    Article  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    Article  CAS  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  Google Scholar 

  • Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ (2012) Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 51:350–377

    Article  CAS  Google Scholar 

  • Malnoe A, Wang F, Girard-Bascou J, Wollman FA, de Vitry C (2014) Thylakoid FtsH protease contributes to photosystem II and cytochrome b 6 f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell 26:373–390

    Article  CAS  Google Scholar 

  • Mata T, Martins A, Caetano N (2010) Microalgae for biodiesel production and others applications: A review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  CAS  Google Scholar 

  • Miller R, Wu G, Deshpande RR, Vieler A, Gärtner K, Li X, Moellering ER, Zäuner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo MH, Hegg EL, Shachar-Hill Y, Shiu SH, Benning C (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    Article  CAS  Google Scholar 

  • Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745

    Article  CAS  Google Scholar 

  • Ramundo S, Casero D, Muhlhaus T, Hemme D, Sommer F, Crevecoeur M, Rahire M, Schroda M, Rusch J, Goodenough U, Pellegrini M, Perez-Perez ME, Crespo JL, Schaad O, Civic N, Rochaix JD (2014) Conditional depletion of the Chlamydomonas chloroplast clpp protease activates nuclear genes involved in autophagy and plastid protein quality control. Plant Cell 26:2201–2222

    Article  CAS  Google Scholar 

  • Sato A, Matsumura R, Hoshino N, Tsuzuki M, Sato N (2014) Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii. Front Plant Sci 5:444

    Article  Google Scholar 

  • Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Merchant SS (2014) Nitrogen sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26:1410–1435

    Article  CAS  Google Scholar 

  • Sharma K, Schuhmann H, Schenk P (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Sugimoto K, Tsuzuki M, Sato N (2010) Regulation of synthesis and degradation of a sulfolipid under sulfur-starved conditions and its physiological significance in Chlamydomonas reinhardtii. New Phytol 185:676–686

    Article  CAS  Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45

    Article  Google Scholar 

  • Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M, Merchant SS (2012) Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 24:3921–3948

    Article  CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009a) Algal lipid bodies: stress induction, purification and biochemical characterization in wild-type and starch less Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009b) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  CAS  Google Scholar 

  • Wei L, Derrien B, Gautier A, Houille-Vernes L, Boulouis A, Saint-Marcoux D, Malnoe A, Rappaport F, de Vitry C, Vallon O, Choquet Y, Wollman FA (2014) Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. Plant Cell 26:353–372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT Grants 151480 to RESG and C14-PIFI-08-14.14. Thanks to Bioprocess CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Elena Soria-Guerra.

Additional information

Araceli Hernández-Torres and Ana Laura Zapata-Morales have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Torres, A., Zapata-Morales, A.L., Ochoa Alfaro, A.E. et al. Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation. World J Microbiol Biotechnol 32, 55 (2016). https://doi.org/10.1007/s11274-016-2008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2008-5

Keywords

Navigation