Skip to main content

Advertisement

Log in

Microbial production strategies and applications of lycopene and other terpenoids

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Terpenoids are a large class of compounds that have far-reaching applications and economic value, particularly those most commonly found in plants; however, the extraction and synthesis of these compounds is often expensive and technically challenging. Recent advances in microbial metabolic engineering comprise a breakthrough that may enable the efficient, cost-effective production of these limited natural resources. Via the engineering of safe, industrial microorganisms that encode product-specific enzymes, and even entire metabolic pathways of interest, microbial-derived semisynthetic terpenoids may soon replace plant-derived terpenoids as the primary source of these valuable compounds. Indeed, the recent metabolic engineering of an Escherichia coli strain that produces the precursor to lycopene, a commercially and medically important compound, with higher yields than those in tomato plants serves as a successful example. Here, we review the recent developments in the metabolic engineering of microbes for the production of certain terpenoid compounds, particularly lycopene, which has been increasingly used in pharmaceuticals, nutritional supplements, and cosmetics. Furthermore, we summarize the metabolic engineering strategies used to achieve successful microbial production of some similar compounds. Based on this overview, there is a reason to believe that metabolic engineering comprises an optimal approach for increasing the production of lycopene and other terpenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190

    Article  CAS  Google Scholar 

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005a) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102:12678–12683

    Article  CAS  Google Scholar 

  • Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005b) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  CAS  Google Scholar 

  • Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J, Lou C, Zhang L (2015) Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc Natl Acad Sci 112:12181–12186

    Article  CAS  Google Scholar 

  • Bhataya A, Schmidt-Dannert C, Lee PC (2009) Metabolic engineering of Pichiapastoris X-33 for lycopene production. Process Biochem 44:1095–1102

    Article  CAS  Google Scholar 

  • Bloch K, Chaykin S, Phillips AH, De Waard A (1959) Mevalonic acid pyrophosphate and isopentenyl pyrophosphate. J Biol Chem 234:2595–2604

    CAS  Google Scholar 

  • Boucher Y, Doolittle WF (2000) The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol 37:703–716

    Article  CAS  Google Scholar 

  • Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley, Hoboken

    Book  Google Scholar 

  • Caillet J, Droogmans L (1988) Molecular cloning of the Escherichia coli miaA gene involved in the formation of delta 2-isopentenyl adenosine in tRNA. J Bacteriol 170:4147–4152

    CAS  Google Scholar 

  • Campos N, Rodríguez-Concepción M, Sauret-Güeto S, Gallego F, Lois LM, Boronat B (2001) Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethyl allyldiphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J 353:59–67

    Article  CAS  Google Scholar 

  • Chen YY, Shen HJ, Cui YY, Chen SG, Weng ZM, Zhao M, Liu JZ (2013) Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnol 13:6

    Article  CAS  Google Scholar 

  • Davies FK, Jinkerson RE, Posewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123:265–284

    Article  CAS  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  • Gassel S, Schewe H, Schmidt I, Schrader J, Sandmann G (2013) Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett 35:565–569

    Article  CAS  Google Scholar 

  • George KW, Chen A, Jain A, Batth TS, Baidoo EEK, Wang G, Adams PD, Petzold CJ, Keasling JD, Lee TS (2014) Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol Bioeng 111:1648–1658

    Article  CAS  Google Scholar 

  • Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 91:317–331

    Article  CAS  Google Scholar 

  • Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2:328–338

    Article  CAS  Google Scholar 

  • Kang MJ, Lee YM, Yoon SH, Kim JH, Ock SW, Jung KH, Shin YC, Keasling JD, Kim SW (2005) Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol Bioeng 91:636–642

    Article  CAS  Google Scholar 

  • Kim YS, Lee JH, Kim NH, Yeom SJ, Kim SW, Oh DK (2011) Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 90:489–497

    Article  CAS  Google Scholar 

  • Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M (2014) Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J Biotechnol 185:1–7

    Article  CAS  Google Scholar 

  • Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact 10:29

    Article  CAS  Google Scholar 

  • Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99

    Article  CAS  Google Scholar 

  • Lorenz P, Zinke H (2005) White biotechnology: differences in US and EU approaches? Trends Biotechnol 23:570–574

    Article  CAS  Google Scholar 

  • Lv X, Xu H, Yu H (2013) Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol 97:2357–2365

    Article  CAS  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  • Matthäus F, Ketelhot M, Gatter M, Barth G (2014) Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol 80:1660–1669

    Article  Google Scholar 

  • Maury J, Asadollahi MA, Møller K, Clark A, Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19–51

    CAS  Google Scholar 

  • Misawa N, Shimada H (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59:169–181

    Article  CAS  Google Scholar 

  • Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229

    CAS  Google Scholar 

  • Nam HK, Choi JG, Lee JH, Kim SW, Oh DK (2013) Increase in the production of β-carotene in recombinant Escherichia coli cultured in a chemically defined medium supplemented with amino acids. Biotechnol Lett 35:265–271

    Article  CAS  Google Scholar 

  • Narita K, Ohnuma S, Nishino T (1999) Protein design of geranyl diphosphatesynthase. Structural features that define the product specificities of prenyltransferases. J Biochem 126:566–571

    Article  CAS  Google Scholar 

  • Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73:1355–1361

    Article  CAS  Google Scholar 

  • Ohnuma S, Narita K, Nakazawa T, Ishida C, Takeuchi Y, Ohto C, Nishino T (1996) A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem 271:30748–30754

    Article  CAS  Google Scholar 

  • Quin MB, Schmidt-Dannert C (2014) Designer microbes for biosynthesis. Curr Opin Biotechnol 29:55–61

    Article  CAS  Google Scholar 

  • Rao LG, Mackinnon ES, Josse RG, Murray TM, Strauss A, Rao AV (2007) Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int 18:109–115

    Article  CAS  Google Scholar 

  • Redding-Johanson AM, Batth TS, Chan R, Krupa R, Szmidt HL, Adams PD, Keasling JD, Lee TS, Mukhopadhyay A, Petzold CJ (2011) Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab Eng 13:194–203

    Article  CAS  Google Scholar 

  • Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT (2002) Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood) 227:900–907

    CAS  Google Scholar 

  • Rodríguez-Villalón A, Pérez-Gil J, Rodríguez-Concepción M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 135:78–84

    Article  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    Article  CAS  Google Scholar 

  • Sabri S, Steen JA, Bongers M, Nielsen LK, Vickers CE (2013) Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci. Microb Cell Fact 12:60

    Article  CAS  Google Scholar 

  • Sedkova N, Tao L, Rouvière PE, Cheng Q (2005) Diversity of carotenoid synthesis gene clusters from environmental Enterobacteriaceae strains. Appl Environ Microbiol 71:8141–8146

    Article  CAS  Google Scholar 

  • Shi J, Dai Y, Kakuda Y, Mittal G, Xue SJ (2008) Effect of heating and exposure to light on the stability of lycopene in tomato puree. Food Control 19:514–520

    Article  CAS  Google Scholar 

  • Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168

    Article  CAS  Google Scholar 

  • Smolke CD, Martin VJ, Keasling JD (2001) Controlling the metabolic flux through the carotenoid pathway using directed mRNA processing and stabilization. Metab Eng 3:313–321

    Article  CAS  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  CAS  Google Scholar 

  • Story EN, Kopec RE, Schwartz SJ, Harris GK (2010) An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol 1:189–210

    Article  CAS  Google Scholar 

  • Sun T, Miao L, Li Q, Dai G, Lu F, Liu T, Zhang X, Ma Y (2014) Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol Lett 36:1515–1522

    Article  CAS  Google Scholar 

  • Takahashi S, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97:170–181

    Article  CAS  Google Scholar 

  • Tao L, Jackson RE, Rouvière PE, Cheng Q (2005) Isolation of chromosomal mutations that affect carotenoid production in Escherichia coli: mutations alter copy number of ColE1-type plasmids. FEMS Microbiol Lett 243:227–233

    Article  CAS  Google Scholar 

  • Tao L, Sedkova N, Yao H, Ye RW, Sharpe PL, Cheng Q (2007) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74:625–633

    Article  CAS  Google Scholar 

  • Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78

    Article  CAS  Google Scholar 

  • Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  CAS  Google Scholar 

  • Vickers CE, Bongers M, Liu Q, Delatte T, Bouwmeester H (2014) Metabolic engineering of volatile isoprenoids in plants and microbes. Plant, Cell Environ 37:1753–1775

    Article  CAS  Google Scholar 

  • Wagner AM, Krab K (1995) The alternative respiration pathway in plants: role and regulation. Physiol Plant 95:318–325

    Article  CAS  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  CAS  Google Scholar 

  • Williams TC, Nielsen LK, Vickers CE (2013) Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae. ACS Synth Biol 2:136–149

    Article  CAS  Google Scholar 

  • Xie W, Liu M, Lv X, Lu W, Gu J, Yu H (2014) Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111:125–133

    Article  CAS  Google Scholar 

  • Xie W, Ye L, Lv X, Xu H, Yu H (2015) Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28:8–18

    Article  CAS  Google Scholar 

  • Xue J, Ahring BK (2011) Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol 77:2399–2405

    Article  CAS  Google Scholar 

  • Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of β-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114

    Article  CAS  Google Scholar 

  • Yang J, Guo L (2014) Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Fact 13:160

    Article  Google Scholar 

  • Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH, Kim JY, Jung KH, Shin YC, Keasling JD, Kim SW (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyldiphosphate and dimethylallyldiphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032

    Article  CAS  Google Scholar 

  • Yuan LZ, Rouvière PE, Larossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90

    Article  CAS  Google Scholar 

  • Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50

    Article  CAS  Google Scholar 

  • Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405

    Article  CAS  Google Scholar 

  • Zhu F, Lu L, Fu S, Zhong X, Hu M, Deng Z, Liu T (2015) Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem 50:341–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the 973 (2012CB721000, 2011CBA00800) and 863 programs (2012AA02A701) of the Ministry of Science and Technology of China, and by a grant from the National Natural Science Foundation of China (31222002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiangang Liu.

Ethics declarations

Conflicts of interest

The authors declare no financial or commercial conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Deng, Z. & Liu, T. Microbial production strategies and applications of lycopene and other terpenoids. World J Microbiol Biotechnol 32, 15 (2016). https://doi.org/10.1007/s11274-015-1975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-1975-2

Keywords

Navigation