Skip to main content
Log in

Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the sewage or wastewater treatment plant, biological sulphate reduction can occur spontaneously or be applied beneficially for its treatment. The results of this study can be applied to control SRB in the sewage and WWTP. Therefore, population diversity analyses of SRB for nine activated sludge wastewater treatment plants (WWTP) in the Netherlands and the effect of long-term (months) oxygen exposures on the SRB activity were carried out. T-RFLP and clone sequencing analyses of winter and summer samples revealed that (1) all WWTP have a similar SRB population, (2) there is no seasonal impact (10–20 °C) on the SRB population present in the WWTP and (3) Desulfobacter postgatei, Desulfovibrio desulfuricans and Desulfovibrio intestinalis were the most common and dominant SRB species observed in these samples, and origin from the sewage. Short term activity tests demonstrated that SRB were not active in the aerobic WWTP, but while flushed with N2-gas SRB became slightly active after 3 h. In a laboratory reactor at a dissolved oxygen concentration of <2 %, sulphate reduction occurred and 89 % COD removal was achieved. SRB grew in granules, in order to protect themselves for oxygen exposures. SRB are naturally present in aerobic WWTP, which is due to the formation of granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdeen S, Di W, Hui L, Chen G-H, van Loosdrecht MCM (2010) Fecal coliform removal in a sulfate reducing autotrophic denitrification and nitrification integrated (SANI) process for saline sewage treatment. Water Sci Technol 62(11):123

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater. 19th edition, ISBN:0-87553-223-3

  • Beun JJ, van Loosdrecht MC, Heijnen JJ (2000) Aerobic granulation. Water Sci Technol 41(4–5):41–48

    CAS  Google Scholar 

  • Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek 67(1):29–46

    Article  CAS  Google Scholar 

  • de Beer D, Schramm A, Santegoeds CM, Nielsen HK (1998) Anaerobic processes in activated sludge. Water Sci Technol 37(4–5):605–608

    Google Scholar 

  • de Kreuk MK, Heijnen JJ, van Loosdrecht MCM (2005) Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng 90(6):761–769

    Article  Google Scholar 

  • Dolla A, Fournier M, Dermoun Z (2006) Oxygen defense in sulfate-reducing bacteria. J Biotechnol 126(1):87–100

    Article  CAS  Google Scholar 

  • Hatchikian EC, Henry YA (1977) An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4). Biochimie 59(2):153–161

    Article  CAS  Google Scholar 

  • Hulshoff Pol LW, Lens PNL, Stams AJM, Lettinga G (2004) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9(3–4):213–224

    Google Scholar 

  • Ishaq CM, Wilcomb MJ, Reid GW (1965) Isolation and cultivation of iron and sulfur bacteria from domestic sewage. Microbiology 45:229–233

    Google Scholar 

  • Kishida N, Kim J, Tsuneda S, Sudo R (2006) Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Water Res 40:2303–2310

    Article  CAS  Google Scholar 

  • Kolbl S, Paloczi A, Panjan J, Stres B (2014) Addressing case specific biogas plant tasks: industry orientend methane yields derived vrom 5L automatic methane potential test systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading. Bioresour Technol 153:180–188

    Article  CAS  Google Scholar 

  • Lau GN, Sharma KR, Chen G-H, van Loosdrecht MCM (2006) Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage. Water Sci Technol 53(3):227–235

    Article  CAS  Google Scholar 

  • Lens PNL, Visser A, Janssen AJH, Hulshoff Pol LW, Lettinga G (1998) Biotechnological treatment of sulfate-rich waste waters. Crit Rev Environ Sci Technol 28(1):41–88

    Article  CAS  Google Scholar 

  • Lens P, Vallero M, Esposito G, Zandvoort M (2002) Perspectives of sulfate reducing bioreactors in environmental biotechnology. Rev Environ Sci Biotechnol 1(4):311–325

    Article  CAS  Google Scholar 

  • Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104:222–234

    Article  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    CAS  Google Scholar 

  • Loy A, Kusel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70(12):6998–7009

  • Manz W, Eisenbrecher M, Neu TR, Szewzyk U (1998) Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25(1):43–61

    Article  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nature 6:441–455

    CAS  Google Scholar 

  • Nielsen JL, Nielsen PH (2002) Quantification of functional groups in activated sludge by microautoradiography. Water Sci Technol 46(1–2):389–395

    CAS  Google Scholar 

  • Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2(1):39–50

    Article  CAS  Google Scholar 

  • Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15(2–3):119–136

    CAS  Google Scholar 

  • Poinapen J, Ekama G, Wentzel MC (2009) Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor—Part 2: modification of simple wet chemistry analytical procedures to achieve COD and S mass balances. Water SA 35(5):525–534

    CAS  Google Scholar 

  • Santegoeds CM, Ferdelman TG, Muyzer G, de Beer D (1998) Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl Environ Microbiol 64(10):3731–3739

    CAS  Google Scholar 

  • Santillano D, Boetius A, Ramette A (2010) Improved dsrA-based terminal restriction fragment length polymorphism analysis of sulfate-reducing bacteria. Appl Environ Microbiol 76(15):5308–5311

    Article  CAS  Google Scholar 

  • Satoh H, Nakamura Y, Ono H, Okabe S (2003) Effect of oxygen concentration on nitrification and denitrification in single activated sludge flocs. Biotechnol Bioeng 83(5):604–607

    Article  CAS  Google Scholar 

  • Schütte U, Abdo Z, Bent S, Shyu C, Williams C, Pierson J, Forney L (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80(3):365–380

    Article  Google Scholar 

  • Tsang WL, Wang J, Lu H, Li S, Chen G-H, van Loosdrecht MCM (2009) A novel sludge minimized biological nitrogen removal process for saline sewage treatment. Water Sci Technol 59(10):1893–1899

    Article  CAS  Google Scholar 

  • van den Brand TPH, Roest K, Chen GH, Brdjanovic D, van loosdrecht MCM (2014) Temperature effect on acetate and propionate consumption by sulphate reducing bacteria in saline wastewater. Appl Microbiol Biotechnol 98(9):4245–4255

    Article  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180(11):2975–2982

  • Wang J, Lu H, Chen G-H, Lau GN, Tsang WL, van Loosdrecht MCM (2009) A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. Water Res 43(9):2363–2372

    Article  CAS  Google Scholar 

  • Zverlov V, Klein M, Lucker S, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187(6):2203–2208

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. H. van den Brand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Brand, T.P.H., Roest, K., Chen, G.H. et al. Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World J Microbiol Biotechnol 31, 507–516 (2015). https://doi.org/10.1007/s11274-015-1807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1807-4

Keywords

Navigation