Skip to main content
Log in

dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sulphate-reducing bacteria (SRB) are important members of the sulphur cycle in wastewater treatment plants (WWTPs). In this study, we investigate the diversity and activity of SRB within the developing and established biofilm of two moving bed biofilm reactor (MBBR) systems treating municipal wastewater in New Zealand. The larger of the two WWTPs (Moa Point) generates high levels of sulphide relative to the smaller Karori plant. Clone libraries of the dissimilatory (bi)sulphite reductase (dsrAB) genes and quantitative real-time PCR targeting dsrA transcripts were used to compare SRB communities between the two WWTPs. Desulfobulbus (35–53 % of total SRB sequences) and genera belonging to the family Desulfobacteraceae (27–41 %) dominated the SRB fraction of the developing biofilm on deployed plastic carriers at both sites, whereas Desulfovibrio and Desulfomicrobium were exclusively found at Moa Point. In contrast, the established biofilms from resident MBBR carriers were largely dominated by Desulfomonile tiedjei-like organisms (58–100 % of SRB sequences). The relative transcript abundance of dsrA genes (signifying active SRBs) increased with biofilm weight yet remained low overall, even in the mature biofilm stage. Our results indicate that although SRB are both present and active in the microbial community at both MBBR study sites, differences in the availability of sulphate may be contributing to the observed differences in sulphide production at these two plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can J Microbiol 55(1):21–36

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Ayton J, Aislabie J, Barker G, Saul D, Turner S (2010) Crenarchaeota affiliated with group 1.1 b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ Microbiol 12(3):689–703

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dov E, Brenner A, Kushmaro A (2007) Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microbial Ecol 54(3):439–451

    Article  CAS  Google Scholar 

  • Biswas K, Taylor MW, Turner SJ (2014) Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater. Appl Microbiol Biotechnol 98(3):1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Biswas K, Turner SJ (2012) Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage. Appl Environ Microbiol 78(3):855–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623–626

    Article  CAS  PubMed  Google Scholar 

  • Bourne DG, Muirhead A, Sato Y (2010) Changes in sulfate-reducing bacterial populations during the onset of black band disease. ISME J 5(3):559–564

    Article  PubMed Central  PubMed  Google Scholar 

  • Bryant M, Campbell LL, Reddy C, Crabill M (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33(5):1162–1169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chin KJ, Esteve-Núñez A, Leang C, Lovley DR (2004) Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens. Appl Environ Microbiol 70(9):5183–5189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Meth 4(1):33–36

    Article  CAS  Google Scholar 

  • Dannenberg S, Kroder M, Dilling W, Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158(2):93–99

    Article  CAS  Google Scholar 

  • Dar SA, Yao L, Van Dongen U, Kuenen JG, Muyzer G (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73(2):594–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis ML, Cornwell DA (1991) Introduction to environmental engineering. McGraw-Hill International Editions, New York

    Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154(1):23–30

    Article  CAS  Google Scholar 

  • DeWeerd KA, Townsend GT, Suflita JM (2005) Desulfomonile. In: Brenner DJ, Boone DR, Staley JT, Garrity GM, Krieg NR, Goodfellow M, De Vos P, Rainey FA, Schleifer K-H (eds) Bergey’s Manual® of Systematic Bacteriology, vol 2, Springer. New York, USA, pp 1036–1039

    Chapter  Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69(5):2765–2772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drinan JE (2001) Water and wastewater treatment: a guide for the nonengineering professional. CRC Press, USA

    Google Scholar 

  • Felsenstein J (1995) PHYLIP-phylogeny inference package (version 3.6.3). Seattle, WA, USA: Department of Genetics, University of Washington

  • Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73(7):2093–2100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frank KL, Rogers DR, Olins HC, Vidoudez C, Girguis PR (2013) Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. ISME J 7(7):1391–1401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52(5):1729-1735

  • Isaksen MF, Teske A (1996) Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166(3):160–168

    Article  CAS  Google Scholar 

  • Ito T, Okabe S, Satoh H, Watanabe Y (2002) Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol 68(3):1392–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joachimiak MP, Weisman JL, May BCH (2006) JColorGrid: software for the visualization of biological measurements. BMC Bioinforma 7(1):225–230

    Article  Google Scholar 

  • Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K (2007) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60(2):287–298

    Article  CAS  PubMed  Google Scholar 

  • Koe LCC (1985) Ambient hydrogen sulphide levels at a wastewater treatment plant. Environ Monit Assess 5(1):101–108

    Article  CAS  PubMed  Google Scholar 

  • Kondo R, Nedwell DB, Purdy KJ, Silva SQ (2004) Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 21(3):145–157

    Article  CAS  Google Scholar 

  • Kovacik WP, Scholten JCM, Culley D, Hickey R, Zhang W, Brockman FJ (2010) Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed. Microbiology 156(8):2418–2427

    Article  CAS  PubMed  Google Scholar 

  • Kühl M, Jørgensen BB (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl Environ Microbiol 58(4):1164–1174

    PubMed Central  PubMed  Google Scholar 

  • Laanbroek HJ, Geerligs HJ, Sijtsma L, Veldkamp H (1984) Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Appl Environ Microbiol 47(2):329–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB (2006) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9(1):131–142

    Article  Google Scholar 

  • Loy A, Küsel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70(12):6998–7009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19(4):554–568

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, Buchner A, Lai T, Steppi S, Jacob G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßbmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement, vol 168. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Marschall C, Frenzel P, Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159(2):168–173

    Article  CAS  Google Scholar 

  • McQuarrie JP, Boltz JP (2011) Moving bed biofilm reactor technology: process applications, design, and performance. Water Environ Res 83(6):560–575

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GJ, Jones JG, Cole JA (1986) Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Arch Microbiol 144(1):35–40

    Article  CAS  Google Scholar 

  • Mohanakrishnan J, Kofoed MVW, Barr J, Yuan Z, Schramm A, Meyer RL (2011) Dynamic microbial response of sulfidogenic wastewater biofilm to nitrate. Appl Microbiol Biotechnol 91(6):1647–1657

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6(6):441–454

    CAS  PubMed  Google Scholar 

  • Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9(1):187–196

    Article  CAS  PubMed  Google Scholar 

  • Neretin LN, Schippers A, Pernthaler A, Hamann K, Amann R, Jørgensen BB (2003) Quantification of dissimilatory (bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR. Environ Microbiol 5(8):660–671

    Article  CAS  PubMed  Google Scholar 

  • Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, DeSantis TZ, Brodie EL, Malamud D, Poles MA, Pei Z (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16(33):4135–4144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Odegaard H, Rusten B, Westrum T (1994) A new moving-bed biofilm reactor - applications and results. Water Sci Technol 29(10–11):157–165

    Google Scholar 

  • Okabe S, Satoh H, Watanabe Y (1999) In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 65(7):3182–3191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ontiveros-Valencia A, Ziv-El M, Zhao H-P, Feng L, Rittmann BE, Krajmalnik-Brown R (2012) Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm. Environ Sci Technol 46(20):11289–11298

    Article  CAS  PubMed  Google Scholar 

  • Pester M, Bittner N, Deevong P, Wagner M, Loy A (2010) A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J 4(12):1591–1602

    Article  CAS  PubMed  Google Scholar 

  • Risatti J, Capman W, Stahl D (1994) Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci U S A 91(21):10173–10177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rusten B, McCoy M, Proctor R, Siljudalen JG (1998) The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater. Water Environ Res:1083-1089

  • Rusten B, Siljudalen JG, Nordeidet B (1994) Upgrading to nitrogen removal with the kmt moving-bed biofilm process. Water Sci Technol 29(12):185–195

    CAS  Google Scholar 

  • Sanin DF (2004) Effect of solution physical chemistry on the rheological properties of activated sludge. Water SA 28(2):207–212

    Google Scholar 

  • Santegoeds CM, Damgaard LR, Hesselink G, Zopfi J, Lens P, Muyzer G, de Beer D (1999) Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses. Appl Environ Microbiol 65(10):4618–4629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santegoeds CM, Ferdelman TG, Muyzer G, De Beer D (1998) Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl Environ Microbiol 64(10):3731–3739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sass A, Rütters H, Cypionka H, Sass H (2002) Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono-and disaccharides. Arch Microbiol 177(6):468–474

    Article  CAS  PubMed  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53(1):141–155

    Article  CAS  PubMed  Google Scholar 

  • Schramm A, Santegoeds CM, Nielsen HK, Ploug H, Wagner M, Pribyl M, Wanner J, Amann R, De Beer D (1999) On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl Environ Microbiol 65(9):4189–4196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sedlak RL (1991) Phosphorus and nitrogen removal from municipal wastewater: principles and practice (2nd edition). Lewis publishers, New York, NY 10016, USA

  • Simister R, Taylor MW, Tsai P, Fan L, Bruxner TJ, Crowe ML, Webster N (2012) Thermal stress responses in the bacterial biosphere of the Great Barrier Reef sponge, Rhopaloeides odorabile. Environ Microbiol 14:3232–3246

    Article  CAS  PubMed  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67(9):4374–4376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith BY, Turner SJ, Rodgers KA (2003) Opal-A and associated microbes from Wairakei, New Zealand: the first 300 days. Mineral Mag 67(3):563–579

    Article  CAS  Google Scholar 

  • Spence C, Whitehead T, Cotta M (2008) Development and comparison of SYBR Green quantitative real-time PCR assays for detection and enumeration of sulfate-reducing bacteria in stored swine manure. J Appl Microbiol 105(6):2143–2152

    Article  CAS  PubMed  Google Scholar 

  • Steger D, Wentrup C, Braunegger C, Deevong P, Hofer M, Richter A, Baranyi C, Pester M, Wagner M, Loy A (2011) Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. Appl Environ Microbiol 77(4):1231–1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • USEPA (1991) Hydrogen sulfide corrosion in wastewater collection and treatment systems. Report to Congress Washington, DC 20460

  • Villanueva L, Haveman SA, Summers ZM, Lovley DR (2008) Quantification of Desulfovibrio vulgaris dissimilatory sulfite reductase gene expression during electron donor-and electron acceptor-limited growth. Appl Environ Microbiol 74(18):5850–5853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vincke E, Monteny J, Beeldens A, Belie ND, Taerwe L, Gemert DV, Verstraete W (2000) Recent developments in research on biogenic sulfuric acid attack of concrete. In: Lens P, Pol LH (eds) Environmental technologies to treat sulfur pollution: principles and engineering. IWA Publishing, London, UK, pp 515–547

    Google Scholar 

  • Wagner M, Loy A, Klein M, Lee N, Ramsing NB, Stahl DA, Friedrich MW (2005) Functional marker genes for identification of sulfate-reducing prokaryotes. Method Enzymol 397:469–489

    Article  CAS  Google Scholar 

  • Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131(4):360–365

    Article  CAS  Google Scholar 

  • Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Zverlov V, Klein M, Lücker S, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187(6):2203–2208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Veolia Limited for the assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristi Biswas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, K., Taylor, M.W. & Turner, S.J. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants. Appl Microbiol Biotechnol 98, 7211–7222 (2014). https://doi.org/10.1007/s00253-014-5769-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5769-5

Keywords

Navigation